Ajwa seeds (Phoenix dactylifera L.) suspension exerted antidiabetic and antihyperlipidemic effects against streptozotocin-induced diabetes in rats by downregulating insulin expression in the pancreatic beta islets

Authors

  • Ahlam Abdulaziz Alahmadi Department of Biological Sciences, College of Science, King Abdulaziz University, Jeddah, Saudi Arabia. http://orcid.org/0000-0001-7240-6278
  • Hessah Mohammed Banayah Department of Biological Sciences, College of Science, King Abdulaziz University, Jeddah, Saudi Arabia.

DOI:

https://doi.org/10.22317/jcms.v7i4.1058

Keywords:

Ajwa Seeds, Glucose, Insulin, Histopathology, Lipids, Immunoexpression

Abstract

Objectives: This study investigated the antidiabetic and antihyperlipidemic effects of the powdered seeds of Ajwa Al-Madina in streptozotocin (STZ)-induced diabetes in rats. Besides investigating the possible underlying mechanisms.

Methods: Rats were assigned to one of six groups (n = 5) as follows: normal control, vehicle control, Ajwa seeds control, diabetic control, Diabetic + Metformin, and Diabetic + Ajwa seeds. Metformin and Ajwa seeds were injected into rats orally via oral gavage 6 days/week along 4 weeks period

Results: Ajwa seeds decreased fasting serum glucose, increased fasting serum insulin and decreased fasting serum triglycerides cholesterol, low-density lipoprotein, and increased fasting serum high-density lipoprotein. Besides, it upregulated insulin protein immunoexpression in the beta cells of Langerhans islets. Ajwa seed also preserved the normal histological structure of the pancreatic beta cells tissue.

Conclusion: Ajwa seeds produced significant hypoglycemic and hypolipidemic effects in diabetic rats mainly through enhancement of insulin secretion. The plant is a promising adjunctive therapy in diabetes mellitus treatment.

References

1. Fan, W. 2017. Epidemiology in diabetes mellitus and cardiovascular disease. Cardiovasc Endocrinol, 6(1), 8–16, https://doi.org/10.1097/XCE.0000000000000116.
2. Meo, S., Sheikh, S., Sattar, K., Akram, A., Hassan, A., Meo, A., Usmani, A., Qalbani, E. & Ullah, A. 2019. Prevalence of type 2 diabetes mellitus among men in the middle east: a retrospective study. Am J Mens Health, 13(3), 1557988319848577, https://doi.org/10.1177/1557988319848577.
3. Cho, N.H., Shaw, J.E., Karuranga, S., Huang, Y., da Rocha Fernandes, J.D., Ohlrogge, A.W. & Malanda, B. 2018. IDF Diabetes Atlas: Global estimates of diabetes prevalence for 2017 and projections for 2045. Diabetes Res Clin Pract, 138, 271–281, https://doi.org/10.1016/j.diabres.2018.02.023.
4. Alotaibi, A., Perry, L., Gholizadeh, L. & Al-Ganmi, A. 2017. Incidence and prevalence rates of diabetes mellitus in Saudi Arabia: An overview. J Epidemiol Glob Health, 7(4), 211–218, https://doi.org/10.1016/j.jegh.2017.10.001.
5. Dawish, M. & Robert, A. 2020. Diabetes mellitus in saudi arabia challenges and possible solutions. In: Handbook of Healthcare in the Arab World, Springer, Cham, 1-18.
6. Raz, I. 2013. Guideline approach to therapy in patients with newly diagnosed type 2 diabetes. Diabetes Care, 36(SUPPL.2), S139–S144, https://doi.org/10.2337/dcS13-2035.
7. Kasole, R., Martin, H. & Kimiywe, J. 2019. Traditional medicine and its role in the management of diabetes mellitus: patients and herbalists perspectives. Evidence-based Complement Altern Med, 2019, 2835691, https://doi.org/10.1155/2019/2835691.
8. Amit Koparde, A., Chandrashekar Doijad, R. & Shripal Magdum, C. 2019. Natural products in drug discovery. Pharmacogn - Med Plants, https://doi.org/10.5772/intechopen.82860.
9. Melek, F., Saleh, D., Medhat, A., Farrag, A., Ghaly, N. & Baraka, S. 2019. Antidiabetic and antioxidant activities of Phoenix dactylifera l. seed extract in streptozotocin-induced diabetic rats. Malaysian J Biochem Mol Biol, 22(1), 53–59.
10. Ghnimi, S., Umer, S., Karim, A. & Kamal-Eldin, A. 2017. Date fruit (Phoenix dactylifera L.): An underutilized food seeking industrial valorization. NFS J, 6, 1–10, https://doi.org/10.1016/j.nfs.2016.12.001.
11. Rahmani, A., Aly, S., Ali, H., Babiker, A., Suikar, S. & Khan, A. 2014. Therapeutic effects of date fruits (Phoenix dactylifera) in the prevention of diseases via modulation of anti-inflammatory, anti-oxidant and anti-tumour activity. Int J Clin Exp Med, 7(3), 483–491.
12. Venkatachalam, C. & Sengottian, M. 2016. Study on roasted date seed non caffeinated coffee powder as a promising alternative. Asian J Res Soc Sci Humanit, 6(6), 1387–1394, https://doi.org/10.5958/2249-7315.2016.00292.6.
13. Sani, I., Hidayah, N., Bakar, A., Adzim, M., Rohin, K., Suleiman, I., Umar, M. & Mohamad, N. 2015. Phoenix dactylifera Linn as a potential novel anti-oxidant in treating major opioid toxicity. J Appl Pharm Sci, 5(08), 167–172, https://doi.org/10.7324/JAPS.2015.50826.
14. Bnouham, M., Ziyyat, A., Mekhfi, H., Tahri, A. & Legssyer, A. 2006. Medicinal plants with potential antidiabetic activity-A review of ten years of herbal medicine research (1990-2000). Journal of diabetes & metabolism, 14, 1-25.
15. Sarfraz, M., Khaliq, T., Khan, J. & Aslam, B. 2017. Effect of aqueous extract of black pepper and ajwa seed on liver enzymes in alloxan-induced diabetic Wister albino rats. Saudi Pharm J, 25(4), 449–452, https://doi.org/10.1016/j.jsps.2017.04.004.
16. Hasan, M. & Mohieldein, A. 2016. In vivo evaluation of anti diabetic, hypolipidemic, antioxidative activities of saudi date seed extract on streptozotocin induced diabetic rats. J Clin Diagnostic Res, 10(3), FF06-FF12, https://doi.org/10.7860/JCDR/2016/16879.7419.
17. Neamatallah, T., El-Shitany, N., Abbas, A., Ali, S. & Eid, B. 2018. Honey protects against cisplatin-induced hepatic and renal toxicity through inhibition of NF-κB-mediated COX-2 expression and the oxidative stress dependent BAX/Bcl-2/caspase-3 apoptotic pathway. Food Funct, 9(7), 3743–3754, https://doi.org/10.1039/C8FO00653A.
18. Meng, X.M., Ma, X.X., Tian, Y.L., Jiang, Q., Wang, L.L., Shi, R., Ding, L. & Pang, S.G. 2017. Metformin improves the glucose and lipid metabolism via influencing the level of serum total bile acids in rats with streptozotocin-induced type 2 diabetes mellitus. Eur Rev Med Pharmacol Sci, 21(9), 2232–2237.
19. Zhang, M., Lv, X., Li, J., Xu, Z. & Chen, L. 2008. The characterization of high-fat diet and multiple low-dose streptozotocin induced type 2 diabetes rat model. Exp Diabetes Res, 2008, 704045, https://doi.org/10.1155/2008/704045.
20. Khan, F., Khan, T., Kalamegam, G., Pushparaj, P., Chaudhary, A., Abuzenadah, A., Kumosani, T., Barbour, E. & Al-Qahtani, M. 2017. Anti-cancer effects of Ajwa dates (Phoenix dactylifera L.) in diethylnitrosamine induced hepatocellular carcinoma in Wistar rats. BMC Complement Altern Med, 17(1), 418, https://doi.org/10.1186/s12906-017-1926-6.
21. El-Sayed, M., Al-Massarani, S., El Gamal, A., El-Shaibany, A. & Al-Mahbashi, H. 2020. Mechanism of antidiabetic effects of Plicosepalus Acaciae flower in streptozotocin-induced type 2 diabetic rats, as complementary and alternative therapy. BMC Complement Med Ther, 20(1), 290, https://doi.org/10.1186/s12906-020-03087-z.
22. Samaha, M., Said, E. & Salem, H. 2019. Nilotinib enhances β-islets integrity and secretory functions in a rat model of STZ-induced diabetes mellitus. Eur J Pharmacol, 860, 172569, https://doi.org/10.1016/J.EJPHAR.2019.172569.
23. Ingaramo, P., Ronco, M., Francés, D., Monti, J., Pisani, G., Ceballos, M., Galleano, M., Carrillo, M. & Carnovale, C. 2011. Tumor necrosis factor alpha pathways develops liver apoptosis in type 1 diabetes mellitus. Mol Immunol, 48(12–13), 1397–1407, https://doi.org/10.1016/J.MOLIMM.2011.03.015.
24. Al-Thobaiti, S. & Abu Zeid, I. 2019. Antidiabetic potential of balanites aegyptiaca kernel, flesh and their combination against streptozotocin-induced hyperglycemia in male rats Trop J Pharm Res, 18(2), 263–271, https://doi.org/10.4314/tjpr.v18i2.7.
25. Putta, S., Yarla, N., Kilari, E., Surekha, C., Aliev, G., Divakara, M., Santosh, M., Ramu, R., Zameer, F., Mn, N., Chintala, R., Rao, P., Shiralgi, Y. & Dhananjaya, B. 2016. Therapeutic potentials of triterpenes in diabetes and its associated complications. Curr Top Med Chem, 16(23), 2532–2542, https://doi.org/10.2174/1568026616666160414123343.
26. Abdelaziz, D. & Ali, S. 2014. The protective effect of Phoenix dactylifera L. seeds against CCl4-induced hepatotoxicity in rats. J Ethnopharmacol, 155(1), 736–743, https://doi.org/10.1016/J.JEP.2014.06.026.
27. El-Mousalamy, A., Hussein, A., Abdelaziz, A., Shaker, G. & Mahmoud, S. 2016. Aqueous and methanolic extracts of palm date seeds and fruits (Phoenix dactylifera) protects against diabetic nephropathy in type II diabetic rats. Biochem Physiol Open Access, 2016(5), 205, https://doi.org/10.4172/2168-9652.1000205.
28. El-Fouhil, A., Ahmed, A. & Darwish, H. 2013. Hypoglycemic effect of an extract from date seeds on diabetic rats. Saudi Med J, 31(7), 747–751.
29. El Fouhil, A., Ahmed, A., Darwish, H., Atteya, M. & Al-Roalle, A. 2011. An extract from date seeds having a hypoglycemic effect is it safe to use? Saudi Med J, 32(8), 791–796.
30. Aftab, A., Muhammad Umair, A., Farhan, S. & Tabussam, T. 2019. Exploring the role of date pit based drinks against hyperglycemia and hypercholesterolemia. Prog Nutr, 21(1-S), 307–320, https://doi.org/10.23751/PN.V21I1-S.6194.
31. Kawaguchi, K., Mizuno, T., Aida, K. & Uchino, K. 1997. Hesperidin as an inhibitor of lipases from porcine pancreas and Pseudomonas. Biosci Biotechnol Biochem, 61(1), 102–104, https://doi.org/10.1271/BBB.61.102.
32. Halaby, M. 2014. Potential effect of date pits fortified bread on diabetic rats. Int J Nutr Food Sci, 3(2), 49, https://doi.org/10.11648/j.ijnfs.20140302.16.
33. Habib, H. & Ibrahim, W. 2011. Effect of date seeds on oxidative damage and antioxidant status in vivo. J Sci Food Agric, 91(9), 1674–1679, https://doi.org/10.1002/JSFA.4368.

Downloads

Published

2021-08-26

How to Cite

Alahmadi, A. A., & Banayah, H. M. (2021). Ajwa seeds (Phoenix dactylifera L.) suspension exerted antidiabetic and antihyperlipidemic effects against streptozotocin-induced diabetes in rats by downregulating insulin expression in the pancreatic beta islets. Journal of Contemporary Medical Sciences, 7(4), 211–216. https://doi.org/10.22317/jcms.v7i4.1058