Doxorubicin Immobilization on chitosan-modified silver Nanoparticles as a drug delivery method for effective anticancer treatment

Authors

  • Manar S. Jabar Department of Chemistry, College of Science, University of Baghdad, Baghdad, Iraq.
  • Shatha Abdul Wadood AL- Shammaree Department of Chemistry, College of Science, University of Baghdad, Baghdad, Iraq.

DOI:

https://doi.org/10.22317/jcms.v8i2.1199

Keywords:

Chitosan, Doxorubicin, Folic Acid, Cellular uptake

Abstract

Objective: The goal of this research is to load Doxorubicin (DOX) on silver nanoparticles coupled with folic acid and test their anticancer properties against breast cancer.

Methods: Chitosan-Capped silver nanoparticles (CS-AgNPs) were manufactured and loaded with folic acid as well as an anticancer drug, Doxorubicin, to form CS-AgNPs-DOX-FA conjugate. AFM, FTIR, and SEM techniques were used to characterize the samples. The produced multifunctional nano-formulation served as an intrinsic drug delivery system, allowing for effective loading and targeting of chemotherapeutics on the Breast cancer (AMJ 13) cell line. Flowcytometry was used to assess therapy efficacy by measuring apoptotic induction.

 Results: DOX and CS-AgNPs-DOX-FA were found to inhibit cell proliferation in the AMJ13 cell line, according to the findings. The anti-proliferative impact of these chemicals was attributed to cell death and activation of apoptosis, as evidenced by dual staining with acridine orange and Ethidium bromide. The presence of high fluorescent signals specific for cellular uptakes of CS-AgNPs-DOX-FA into the cell line's cytoplasm was confirmed.

Conclusion: According to the findings of this study, CS-AgNPs-DOX-FA has a lot of promise to be used as an anticancer delivery system. The findings imply that this conjugate should be researched further for potential use as anticancer drug.

References

National Research N. Council, Reaping the Benefits of Genomic and Proteomic Research: Intellectual Property Rights, Innovation, and Public Health, National Academies Press.2006 Feb ;15(1):1-188. doi: https://doi.org/10.17226/11487

Cavalier-Smith T. Origin of the cell nucleus, mitosis and sex: roles of intracellular coevolution, Biol. Direct. 2010 Dec; 5(1):1-78. doi:10.1186/1745-6150-5-7

Jemal A, Siegel R, War E d, Hao Y, Xu J, Murray T, Thun MJ. Cancer statistics, 2008. Cancer J. Clin. 2008 Mar-Apr; 58(2):71-96. doi: 10.3322/CA.2007.0010.

Elbialy N, Mohamed N, Monem AS. Preparation and characterization of SiO2–Au nanoshells: in vivo study of its photo-heat conversion. Journal of Biomedical Nanotechnology. 2013 Feb; 9(2):158–166. doi: 10.1166/jbn.2013.1481.

Chen Y, Wan Y, Wang Y, Zhang H, Jiao Z. Anticancer efficacy enhancement and attenuation of side effects of doxorubicin with titanium dioxide nanoparticles. International journal of nanomedicine. 2011; 6:2321. doi: 10.2147/IJN.S25460.

Salehiabar M, Nosrati H, Davaran S, Danafar H, Manjili HK. Facile synthesis and characterization of l-aspartic acid coated iron oxide magnetic nanoparticles (IONPs) for biomedical applications, Drug Res. 2018 May; 68(5):280-285.doi: 10.1055/s-0043-120197.

Burdușel AC, Gherasim O, Grumezescu AM, Mogoantă L, Ficai A, Andronescu E. Biomedical applications of silver nanoparticles: an up-to-date overview. Nanomaterials. 2018 Sep; 8(9):681. doi: 10.3390/nano8090681.

Rostamizadeh K, Manafi M, Nosrati H, H.K. Manjili H. Danafar, Methotrexateconjugated mPEG–PCL copolymers: a novel approach for dual triggered drug delivery, New J. Chem. 2018 Mar; 42(31) :5937–5945. doi:10.1039/C7NJ04864E

Salehiabar M, Nosrati H, Javani E, Aliakbarzadeh F, H.K. Manjili, S. Davaran, H. Danafar, Production of biological nanoparticles from bovine serum albumin as controlled release carrier for curcumin delivery, Int. J. Biol. Macromol. 2018 Apr; 115:83-89.

doi: 10.1016/j.ijbiomac.2018.04.043

Nosrati H, Sefidi N, Sharafi A, Danafar H, H.K. Manjili, Bovine serum albumin (BSA) coated iron oxide magnetic nanoparticles as biocompatible carriers for curcumin-anticancer drug, Bioorg. Chem. 2018 Feb; 76:501-509. doi: 10.1016/j.bioorg.2017.12.033.

Elieh-Ali-Komi, D, Hamblin M R. Chitin and chitosan: production and application of versatile biomedical nanomaterials. International Journal of Advanced Research .2016 Mar; 4(3):411-427. doi: 10.1166/jbn.2014.1882.

Pang Y, Qin A, Lin X, Yang L, Wang Q, Wang Z, Shan Z, Li S, Wang J, Fan S, Hu Q. Biodegradable and biocompatible high elastic chitosan scaffold is cell-friendly both in vitro and in vivo. Oncotarget. 2017 May 30;8(22):35583.doi: 10.18632/oncotarget.14709.

Naskar S, Sharma S, Kuotsu K. Chitosan-based nanoparticles: An overview of biomedical applications and its preparation. Journal of Drug Delivery Science and Technology. 2019 Feb 1;49:66-81. doi: 10.1080/1061186X.2018.1512112.

Suh JK F, Matthew H W T. Application of chitosan based polysaccharide biomaterials in cartilage tissue engineering: a review. Biomaterials. 2000 Dec; 21(24):2589-98. doi: 10.1016/s0142-9612(00)00126-5.

Rajurkar RM, Rathod CP, Thonte SS, Sugave RV, Sugave BK, Phadtare AA, Bhosale PH. Gastroretentive mucoadhesive microsphere as carriers in drug delivery: a review. Indo American Journal of Pharmaceutical Research. 2013Dec; 3(12): 2751-2777. http://www.iajpr.com/index.php/en/

Muzzarelli RA. Chitins and chitosans for the repair of wounded skin, nerve, cartilage and bone. Carbohydrate polymers. 2009 Mar 17;76(2):167-82. https://doi.org/10.1016/j.carbpol.2008.11.002.

Fan Z, Qin Y, Liu S, Xing R, Yu H, Chen X, K. Li, P. Li, Synthesis, characterization, and antifungal evaluation of diethoxyphosphoryl polyaminoethyl chitosan derivatives, Carbohydr. Polym. 2018 Jun 15;190:1-11. doi: 10.1016/j.carbpol.2018.02.056.

Vollset SE, Clarke R, Lewington S, Ebbing M, Halsey J, Lonn E, Armitage J, Manson JE, Hankey GJ, Spence JD, et al. . Effects of folic acid supplementation on overall and site-specific cancer incidence during the randomised trials: meta-analyses of data on 50,000 individuals. 2013 Mar;381(9871):1029-36.doi: 10.1016/S0140-6736(12)62001-7.

Sabharanjak S, Mayor S. Folate receptor endocytosis and trafficking. Adv Drug Deliv Rev. 2004 Apr;56(8):1099-109. doi: 10.1016/j.addr.2004.01.010.

Mansoori G. A, Mohazzabi P, McCormack P, Jabbari S, “Nanotechnology in cancer prevention, detection and treatment: bright future lies ahead,” World Review of Science, Technology and Sustainable Development. 2007 Jan; 4 (2|3): 226–257. doi:10.1504/WRSTSD.2007.013584

Sanpui P, Chattopadhyay A, Ghosh SS. Induction of apoptosis in cancer cells at low silver nanoparticle concentrations using chitosan nanocarrier. ACS Appl Mater Interfaces. 2011 Feb;3(2):218-28. doi: 10.1021/am100840c.

Davaran S, Fazeli H, Ghamkhari A, Rahimi F, Molavi O, Anzabi M et al Synthesis and Characterization of Novel P (HEMA-LA-MADQUAT) micelles for co-delivery of Methotrexate and Chrysin in combination cancer chemotherapy. J Biomat Sci Polymer Edition. 2018 Aug; 29(11):1265-1286. doi: 10.1080/09205063.2018.1456026.

Zapata DA. Design, synthesis, characterization and development of novel organic conducting polymers with technological applications. upcommons.upc. 2013Jun; 86 (3):309–315. URI http://hdl.handle.net/2117/94880

Berridge MV, Herst PM, Tan AS. "Tetrazolium dyes as tools in cell biology: new insights into their cellular reduction". Biotechnology Annual Review. 2005 Sep; 11:127-52.

doi: 10.1016/S1387-2656(05)11004-7.

Stockert JC, Blázquez-Castro A, Cañete M, Horobin RW, Villanueva A. "MTT assay for cell viability: Intracellular localization of the formazan product is in lipid droplets". Acta Histochemica. 2012 Dec; 114 (8): 785–796. doi: 10.1016/j.acthis.2012.01.006.

Salazar C, El-Arabi AM, Scmidt JJ. EC50 and IC50 measurements of TRPM8 in lipid bilayers, Biophysical journal. 2012 Oct; 102 (3): 344-345. doi:10.1371/journal.pone.0141366

Sulaiman GM, Jabir MS, Hameed AH. Nanoscale modification of chrysin for improved of therapeutic efficiency and cytotoxicity. Artificial cells, nanomedicine, and biotechnology. 2018 Mar; 46 (1): 708-72. doi: 10.1021/bc500452y

McGarraugh HH. Supramolecular Probes for Imaging, Therapy, and Diagnostics. A Dissertation, University of Notre Dame; 2021.

Ibrahim HM, Farid OA, Samir A, Mosaad RM. Preparation of chitosan antioxidant nanoparticles as drug delivery system for enhancing of anti-cancer drug. InKey Engineering Materials 2018 (Vol. 759, pp. 92-97). Trans Tech Publications Ltd. https://doi.org/10.4028/www.scientific.net/KEM.759.92

Han D, Yan L, Chen W, Li W. Preparation of chitosan/graphene oxide composite film with enhanced mechanical strength in the wet state. Carbohydrate Polymers. 2011 Jan 10;83(2):653-8. https://doi.org/10.1016/j.carbpol.2010.08.038.

Hajji S, Khedir S B, Hamza-Mnif I, Hamdi M, Jedidi I, Kallel R, Boufi S, Nasri M. Biomedical potential of chitosan-silver nanoparticles with special reference to antioxidant, antibacterial, hemolytic and in vivo cutaneous wound healing effects. Biochimica et Biophysica Acta (BBA) - General Subjects.2019 Jan; 1863(1):241-254.doi: 10.1016/j.bbagen.2018.10.010.

Laghrib F, Ajermoun N, Bakasse M, Lahrich S, El Mhammedi M A. Synthesis of silver nanoparticles assisted by chitosan and its application to catalyze the reduction of 4-nitroaniline. International Journal of Biological Macromolecules, 2019 May;135:752-759

doi: 10.1016/j.ijbiomac.2019.05.209

Victor S P, Paul W, Jayabalan M, Sharma CP. Supramolecular hydroxyapatite complexes as theranostic near infrared luminescent drug carriers. 2014Agu;16(38):9033–9042. doi:10.1039/C4CE01137F

Nguyen HN, Hoang TM, Mai TT, Nguyen TQ, Do HD, Pham TH, Nguyen TL, Ha PT. Enhanced cellular uptake and cytotoxicity of folate decorated doxorubicin loaded PLA-TPGS nanoparticles. Advances in Natural Sciences: Nanoscience and Nanotechnology. 2015 Feb 2;6(2):025005. doi: 10.1088/2043-6262/6/2/025005.

Wazed Ali S, Rajendran S, Joshi M Synthesis and characterization of chitosan and silver loaded chitosan nanoparticles for bioactive polyester. 2001Jan;83(2):438–446. doi:10.1016/j.carbpol.2010.08.004

Seifirad S, Karami H, Shahsavari S, Mirabasi F, Dorkoosh F. Design and characterization of mesalamine loaded nanoparticles for controlled delivery system. Nanomedicine Research Journal. 2016 Oct 1;1(2):97-106.doi: 10.7508/nmrj.2016.02.006

Zare, M., Samani, S. M., & Sobhani, Z. Enhanced intestinal permeation of doxorubicin using chitosan nanoparticles. Advanced Pharmaceutical Bulletin. 2018 Aug; 8(3):411-417. doi: 10.15171/apb.2018.048.

H. Nosrati, M. Salehiabar, E. Attari, S. Davaran, H. Danafar, H.K. Manjili, Green and one-pot surface coating of iron oxide magnetic nanoparticles with natural amino acids and biocompatibility investigation, Appl. Organomet. 2018 Sep; 32(2): 886-894:doi:10.1002/aoc.4069

Downloads

Published

2022-04-26

How to Cite

Jabar , M. S., & AL- Shammaree, S. A. W. . (2022). Doxorubicin Immobilization on chitosan-modified silver Nanoparticles as a drug delivery method for effective anticancer treatment. Journal of Contemporary Medical Sciences, 8(2). https://doi.org/10.22317/jcms.v8i2.1199