Impact of CYP2D6 polymorphisms on the efficacy of tamoxifen in Iraqi women with breast cancer
DOI:
https://doi.org/10.22317/jcms.v9i6.1396Keywords:
Tamoxifen, CYP2D6, breast cancer, genetic polymorphism, Iraqi, variable, Clinical outcomeAbstract
- Objectives: The aim of the present study was to investigate the impact of the CYP2D6 genetic polymorphism on clinical outcome in Iraqi breast cancer patients who were candidates for Tamoxifen therapy.
- Methods: Comprehensive CYP2D6 genotyping was performed in 140 Iraqi women with breast cancer who were women on adjuvant treatment with tamoxifen. Breast cancer patients recruited into the study were divided into two groups: seventy breast cancer women who had no history of recurrence at the time of sampling and had a long time on tamoxifen without recurrence and seventy breast cancer women who had recurrence at the time of sampling after one year of treatment with tamoxifen therapy. Recurrence free survival (RFS) was determined in the recruited patients.
- Results: Multiple genetic variants of the gene encoding the CYP2D6 enzyme were detected with significant differences in their frequencies and percentages in both recurrent and non-recurrent groups of breast cancer patients. The findings of this study suggest that interindividual variation in clinical outcome may be related to genetic variation in CYP2D6 enzyme, which is characterized by variable RFS periods.
- Conclusions: This study revealed that the CYP2D6 enzyme of breast cancer patients who participated in this study is highly polymorphic. The CYP2D6 gene of study participants exhibited different allelic combinations with variable frequencies. The multiple genetic variants (alleles) of the gene encoding the CYP2D6 enzyme exhibited significant differences in their frequencies and percentages in both recurrent and non-recurrent groups of breast cancer patients. .The study revealed variable Recurrence free survival (RFS) with highly polymorphic gene. Our study quotes the presence of increased CYP2D6 enzyme polymorphism is associated with variable clinical response.
References
Del Re, M., Michelucci, A., Simi, P., & Danesi, R. (2012). Pharmacogenetics of antiestrogen treatment of breast cancer. Cancer treatment reviews, 38(5), 442–450.
International Agency for Cancer Research: Estimated Incidence, Mortality and Prevalence Worldwide in 2012. http://globocan. iarc.fr/old/Fact Sheets/cancers / breast‑ new.asp. Accessed February 16, 2016.
Early Breast Cancer Trialists’ Collaborative Group. (2011). Relevance of breast cancer hormone receptors and other factors to the efficacy of adjuvant tamoxifen: patient-level meta-analysis of randomized trials.The lancet, 378(9793), 771–784.
Yager, J. D. (2000). Chapter 3: endogenous estrogens as carcinogens through metabolic activation. JNCI Monographs, 2000(27), 67–73.
Davies, C., Pan, H., Godwin, J., Gray, R., Arriagada, R., Raina, V., & Bradbury, J. (2013). Long-term effects of continuing adjuvant tamoxifen to 10 years versus stopping at 5 years after diagnosis of estrogen receptor-positive breast cancer: ATLAS, a randomized trial. The Lancet, 381(9869), 805–816.
Brauch, H., Mürdter, T. E., Eichelbaum, M., & Schwab, M. (2009). Pharmacogenomics of tamoxifen therapy. Clinical chemistry, 55(10), 1770–1782.
Ratliff, B., Dietze, E. C., Bean, G. R., Moore, C., Wanko, S., & Seewaldt, V. L. (2004). Re: Active tamoxifen metabolite plasma concentrations after coadministration of tamoxifen and the selective serotonin reuptake inhibitor paroxetine. Journal of the National Cancer Institute, 96(11), 883–883.
Melo, M. D. A., Vasconcelos Valença, D., José, R., Neto, F. M., Borges, R. S., Costa Silva, D. R., & Da Silva, B. B. (2016). CYP2D6 gene polymorphisms in Brazilian patients with breast cancer treated with adjuvant tamoxifen and its association with disease recurrence. Biomedical reports, 5(5), 574–578.
Committee HCPCAN. Available at: http://www.cypalleles.ki.se/. 2008. Accessed November 22, 2010.
Del Re, M., Citi, V., Crucitta, S., Rofi, E., Belcari, F., Van Schaik, R. H., & Danesi, R. (2016). Pharmacogenetics of CYP2D6 and tamoxifen therapy: Light at the end of the tunnel?. Pharmacological research, 107, 398–406.
Antunes, Marina Venzon, et al. “Sensitive HPLC–PDA determination of tamoxifen and its metabolites N-desmethyl tamoxifen, 4- ydroxytamoxifen and endoxifen in human plasma.” Journal of pharmaceutical and biomedical analysis 76 (2013): 13–20.
Lim, Y. C., Li, L., Desta, Z., Zhao, Q., Rae, J. M., Flockhart, D. A., & Skaar, T. C. (2006). Endoxifen, a secondary metabolite of tamoxifen, and 4-OHtamoxifen induce similar changes in global gene expression patterns in MCF-7 breast cancer cells. Journal of Pharmacology and Experimental Therapeutics, 318(2), 503–512.
Desta, Z., Ward, B. A., Soukhova, N. V., & Flockhart, D. A. (2004). Comprehensive evaluation of tamoxifen sequential biotransformation by the human cytochrome P450 system in vitro: prominent roles for CYP3A and CYP2D6. Journal of Pharmacology and Experimental Therapeutics, 310(3), 1062–1075.
Kiyotani, K., Mushiroda, T., Sasa, M., Bando, Y., Sumitomo, I., Hosono, N., & Zembutsu, H. (2008). Impact of CYP2D6* 10 on recurrence‐free survival in breast cancer patients receiving adjuvant tamoxifen therapy. Cancer science, 99(5), 995–999.
Gaedigk, A., Sangkuhl, K., Whirl-Carrillo, M., Klein, T., & Leeder, J. S. (2017). Prediction of CYP2D6 phenotype from genotype across world populations. Genetics in Medicine, 19(1), 69.
Khan, B. A., Robinson, R., Fohner, A. E., Muzquiz, L. I., Schilling, B. D., Beans, J. A & Beatty, P. (2018). Cytochrome P450 genetic variation associated with tamoxifen biotransformation in American Indian and Alaska native people. Clinical and translational science, 11(3), 312–321.
Drögemöller, B. I., Wright, G. E., Shih, J., Monzon, J. G., Gelmon, K. A., Ross, C. J & Carleton, B. C. (2018). CYP2D6 as a treatment decision aid for ERpositive nonmetastatic breast cancer patients: a systematic review with accompanying clinical practice guidelines. Breast cancer research and treatment, 1–12.
Pietarinen, P., Tornio, A., & Niemi, M. (2016). High Frequency of CYP 2D6 Ultrarapid Metabolizer Genotype in the Finnish Population. Basic & clinical pharmacology & toxicology, 119(3), 291–296
Marez D, Legrand M, Sabbagh N, et al. Polymorphism of the cytochrome P450 CYP2D6 gene in a European population: characterization of 48 mutations and 53 alleles, their frequencies and evolution. Pharmacogenetics. 1997; 7: 193–202.
Beverage, J. N., Sissung, T. M., Sion, A. M., Danesi, R., & Figg, W. D. (2007). CYP2D6 polymorphisms and the impact on tamoxifen therapy. Journal of pharmaceutical sciences, 96(9), 2224–2231.
Jin, Y., Desta, Z., Stearns, V., Ward, B., Ho, H., Lee, K. H. & Blanchard, R. (2005). CYP2D6 genotype, antidepressant use, and tamoxifen metabolism during adjuvant breast cancer treatment. Journal of the National Cancer Institute, 97(1), 30–39.
Borges, S., Desta, Z., Li, L., Skaar, T. C., Ward, B. A., Nguyen, A & Hillman, G. (2006). Quantitative effect of CYP2D6 genotype and inhibitors on tamoxifen metabolism: implication for optimization of breast cancer treatment. Clinical Pharmacology & Therapeutics, 80(1), 61–74.
Hennig, E. E., Piatkowska, M., Karczmarski, J., Goryca, K., Brewczynska, E., Jazwiec, R & Ostrowski, J. (2015). Limited predictive value of achieving beneficial plasma (Z)-endoxifen threshold level by CYP2D6 genotyping in tamoxifen-treated Polish women with breast cancer. BMC cancer, 15(1), 570.
López, Marisol, et al. “CYP2D6 genotype and phenotype determination in a Mexican Mestizo population.” European journal of clinical pharmacology 61.10 (2005): 749–754.
Jorge LF, Eichelbaum M, Griese EU, Inaba T, Arias TD (1999) Comparative evolutionary pharmacogenetics of CYP2D6 in Ngawbe and Embera Amerindians of Panama and Colombia: role of selection versus drift in world populations. Pharmacogenetics 9:217–228.
Johansson I, Oscarson M, Yue QY, Bertilsson L, Sjoqvist F, Ingelman–Sundberg M (1994) Genetic analysis of the Chinese cytochrome P4502D locus: characterization of variant CYP2D6 genes present in subjects with diminished capacity for debrisoquine hydroxylation. Mol Pharmacol 46:452–459.
Nishida Y, Fukuda T, Yamamoto I, Azuma J (2000) CYP2D6 genotypes in a Japanese population: low frequencies of CYP2 D6 gene duplication but high frequency of CYP2D6*10. Pharmacogenetics 6:567–570.
De Dueñas, Eduardo Martinez, et al. “Adjusting the dose of tamoxifen in patients with early breast cancer and CYP2D6 poor metabolizer phenotype.” The Breast 23.4 (2014): 400–406.
Zafra-Ceres, M., De Haro, T., Farez-Vidal, E., Blancas, I., Bandres, F., de Dueñas, E. M., & Gomez-Llorente, C. (2013). Influence of CYP2D6 polymorphisms on serum levels of tamoxifen metabolites in Spanish women with breast cancer. International journal of medical sciences, 10(7), 932.
Morrow, P. K., Serna, R., Broglio, K., Pusztai, L., Nikoloff, D. M., Hillman, G. R., & Gonzalez‐Angulo, A. M. (2012). Effect of CYP2D6 polymorphisms on breast cancer recurrence. Cancer, 118(5), 1221–1227.
Okat, Z., Yaman, K., Çiftçi, K. U., Toplayıcı, S., Kurt, E., & Taga, Y. (2018). Determination of CYP2D6* 3 and* 4 allele frequency among Turkish population.
Alcazar-González, G. A., Calderón-Garcidueñas, A. L., Garza-Rodríguez, M. L., Rubio-Hernández, G., Escorza-Treviño, S., Olano-Martin, E & Simon-Buela, L. (2013). Comparative study of polymorphism frequencies of the CYP2D6, CYP3A5, CYP2C8 and IL-10 genes in Mexican and Spanish women with breast cancer. Pharmacogenomics, 14(13), 1583–1592.
Sachse C, Brockmoller J, Bauer S, Roots I (1997) Cytochrome P450 2D6 variants in a Caucasian population: allele frequencies and phenotypic consequences. Am J Hum Genet 60:284–295.
Scordo MG, Spina E, Facciola G, Avenoso A, Johansson I, Dahl ML (1999) Cytochrome P450 2D6 genotype and steady state plasma levels of risperidone and 9–hydroxyrisperidone. Psychopharmacology (Berl) 147:300–305.
Aklillu E, Persson I, Bertilsson L, Johansson I, Rodrigues F, Ingelman–Sundberg M (1996) Frequent distribution of ultrarapid metabolizers of debrisoquine in an Ethiopian population carrying duplicated and multiduplicated functional CYP2D6 alleles. J Pharmacol Exp Ther 278:441–446.
Wigle, T., Jansen, L., Teft, W., & Kim, R. (2017). Pharmacogenomics guidedpersonalization of warfarin and tamoxifen. Journal of personalized medicine, 7(4), 20.
Mendoza R, Wan YJ, Poland RE, Smith M, Zheng Y, Berman N, Lin KM (2001) CYP2D6 polymorphism in a Mexican American population. Clin Pharmacol Ther 70:552–560.
Brauch, H., Mürdter, T. E., Eichelbaum, M., & Schwab, M. (2009). Pharmacogenomics of tamoxifen therapy. Clinical chemistry, 55(10), 1770–1782.
Yu, C. Y., Ang, G. Y., Subramaniam, V., Johari James, R., Ahmad, A., Abdul Rahman, T & Salleh, M. Z. (2017). Inference of the genetic polymorphisms of CYP2D6 in six subtribes of the malaysian orang asli from whole-genome sequencing data. Genetic testing and molecular biomarkers, 21(7), 409–415.
Wegman, P., Vainikka, L., Stål, O., Nordenskjöld, B., Skoog, L., Rutqvist, L. E., & Wingren, S. (2005). Genotype of metabolic enzymes and the benefit of tamoxifen in postmenopausal breast cancer patients. Breast Cancer Research, 7(3), R284.
Desta, Z., & Flockhart, D. A. (2017). Pharmacogenetics of Drug Metabolism. In Clinical and Translational Science (Second Edition) (pp. 327–345).
Wegman, P., Elingarami, S., Carstensen, J., Stål, O., Nordenskjöld, B., & Wingren, S. (2007). Genetic variants of CYP3A5, CYP2D6, SULT1A1, UGT2B15 and tamoxifen response in postmenopausal patients with breast cancer. Breast Cancer Research, 9(1), R7.
Ferraldeschi, R., & Newman, W. G. (2010). The impact of CYP2D6 genotyping on tamoxifen treatment. Pharmaceuticals, 3(4), 1122–1138.
Kiss, Á. F., Tóth, K., Juhász, C., Temesvári, M., Paulik, J., Hirka, G., & Monostory, K. (2018). Is CYP2D6 phenotype predictable from CYP2D6 genotype?. Microchemical Journal, 136, 209–214.
Cronin-Fenton, D. P., & Damkier, P. (2018). Tamoxifen and CYP2D6: A Controversy in Pharmacogenetics. In Advances in Pharmacology (Vol. 83, pp. 65–91). Academic Press.
Brooks, J. D., Comen, E. A., Reiner, A. S., Orlow, I., Leong, S. F., Liang, X & Bernstein, L. (2018). CYP2D6 phenotype, tamoxifen, and risk of contralateral breast cancer in the WECARE Study. Breast Cancer Research, 20(1), 149.
Ingelman-Sundberg, M. (2005). Genetic polymorphisms of cytochrome P450 2D6 (CYP2D6): clinical consequences, evolutionary aspects and functional diversity. The pharmacogenomics journal, 5(1), 6.
Goetz, M. P., Knox, S. K., Suman, V. J., Rae, J. M., Safgren, S. L., Ames, M. M & Weinshilboum, R. M. (2007). The impact of cytochrome P450 2D6 metabolism in women receiving adjuvant tamoxifen. Breast cancer research and treatment, 101(1), 113–121.
Schroth, W., Antoniadou, L., Fritz, P., Schwab, M., Muerdter, T., Zanger, U. M & Brauch, H. (2007). Breast cancer treatment outcome with adjuvant tamoxifen relative to patient CYP2D6 and CYP2C19 genotypes. Journal of Clinical Oncology, 25(33), 5187–5193.
Irvin Jr, W. J., Walko, C. M., Weck, K. E., Ibrahim, J. G., Chiu, W. K., Dees, E. C & Raab, R. E. (2011). Genotype-guided tamoxifen dosing increases active metabolite exposure in women with reduced CYP2D6 metabolism: a multicenter study. Journal of clinical oncology, 29(24), 3232.
Martins DM, Vidal FC, Souza RD, Brusaca SA and Brito LM. (2014). Determination of CYP2D6 *3, *4, and *10 frequency in women with breast cancer in São Luís, Brazil, and its association with prognostic factors and disease-free survival. Braz J Med Biol Res 47, 1008–1015.
Okishiro, M., Taguchi, T., Kim, S. J., Shimazu, K., Tamaki, Y., & Noguchi, S. (2009). Genetic polymorphisms of CYP2D6* 10 and CYP2C19* 2,* 3 are not associated with prognosis, endometrial thickness, or bone mineral density in Japanese breast cancer patients treated with adjuvant tamoxifen. Cancer, 115(5), 952–961.
Caraco Y. Genes and the response to drugs. N Engl J Med. 2004;351:2867–2869
Lim, H. S., Ju Lee, H., Seok Lee, K., Sook Lee, E., Jang, I. J., & Ro, J. (2007). Clinical implications of CYP2D6 genotypes predictive of tamoxifen pharmacokinetics in metastatic breast cancer. Journal of Clinical Oncology, 25(25), 3837–3845.
Lim, J. S., Chen, X. A., Singh, O., Yap, Y. S., Ng, R. C., Wong, N. S & Chowbay, B. (2011). Impact of CYP2D6, CYP3A5, CYP2C9 and CYP2C19 polymorphisms on tamoxifen pharmacokinetics in Asian breast cancer patients. British journal of clinical pharmacology, 71(5), 737–750.
Nazir, N., Waheed, A., Farhat, K., Ismail, M., & Mansoor, Q. (2016). Frequency of CYP2D6* 10 genotypes in Pakistani breast cancer patients taking adjuvant tamoxifen. JPMA. The Journal of the Pakistan Medical Association, 66(12), 1554–1558.
Del Tredici, A. L., Malhotra, A., Dedek, M., Espin, F., Roach, D., Zhu, G. D., & Moreno, T. A. (2018). Frequency of CYP2D6 Alleles Including Structural Variants in the United States. Frontiers in pharmacology, 9, 305.
Goetz, M. P., Rae, J. M., Suman, V. J., Safgren, S. L., Ames, M. M., Visscher, D. W & Desta, Z. (2005). Pharmacogenetics of tamoxifen biotransformation is associated with clinical outcomes of efficacy and hot flashes. Journal of Clinical Oncology, 23(36), 9312–9318.
Zembutsu, H., Nakamura, S., Akashi-Tanaka, S., Kuwayama, T., Watanabe, C., Takamaru, T. & Hasegawa, Y. (2017). Significant effect of polymorphisms in CYP2D6 on response to tamoxifen therapy for breast cancer: a prospective multicenter study. Clinical Cancer Research, 23(8), 2019–2026.
Sim, S., Lövrot, J., Lindh, J. D., Bergh, J., & Xie, H. (2018). Effect of CYP2C19 and CYP2D6 genotype on tamoxifen treatment outcome indicates endogenous and exogenous interplay. Pharmacogenomics, 19(13), 1027–1037.
Kelly, C. M., Juurlink, D. N., Gomes, T., Duong-Hua, M., Pritchard, K. I., Austin, P. C., & Paszat, L. F. (2010). Selective serotonin reuptake inhibitors and breast cancer mortality in women receiving tamoxifen: a population based cohort study. Bmj, 340, c693.
Seruga, B., & Amir, E. (2010). Cytochrome P450 2D6 and outcomes of adjuvant tamoxifen therapy: results of a meta-analysis. Breast cancer research and treatment, 122(3), 609–617.
Schroth, W., Goetz, M. P., Hamann, U., Fasching, P. A., Schmidt, M., Winter, S & Safgren, S. L. (2009). Association between CYP2D6 polymorphisms and outcomes among women with early stage breast cancer treated with tamoxifen. Jama, 302(13), 1429–1436.
Bijl, M. J., van Schaik, R. H., Lammers, L. A., Hofman, A., Vulto, A. G., van Gelder, T & Visser, L. E. (2009). The CYP2D6* 4 polymorphism affects breast cancer survival in tamoxifen users. Breast cancer research and treatment, 118(1), 125–130.
Gonzalez-Santiago, S., Zárate, R., Haba-Rodríguez, J., Gómez, A., Bandrés, E., Moreno, S & Aranda, E. (2007). CYP2D6* 4 polymorphism as blood predictive biomarker of breast cancer relapse in patients receiving adjuvant tamoxifen. Journal of Clinical Oncology, 25(18_suppl), 590–590.
Nowell, S. A., Ahn, J., Rae, J. M., Scheys, J. O., Trovato, A., Sweeney, C & Ambrosone, C. B. (2005). Association of genetic variation in tamoxifenmetabolizing enzymes with overall survival and recurrence of disease in breast cancer patients. Breast cancer research and treatment, 91(3), 249–258.
Ferna ´ndez-Santander A, Gaibar M, Novillo A, Romero-Lorca A, Rubio M, Chicharro LM, et al.(2013). Relationship between genotypes Sult1a2 and Cyp2d6 and tamoxifen metabolism in breast cancer patients. PLoS One, 8:e70183.
Bonanni, B., Macis, D., Maisonneuve, P., Johansson, H. A., Gucciardo, G., Oliviero, P& Decensi, A. U. (2006). Polymorphism in the CYP2D6 tamoxifenmetabolizing gene influences clinical effect but not hot flashes: data from the Italian Tamoxifen Trial. J Clin Oncol, 24(22), 3708–3709.
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2023 Journal of Contemporary Medical Sciences
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.