Moxifloxacin's Therapeutic Effects in AA-Induced Colitis: Anti-Inflammatory Action through NF-κB Pathway Inhibition, Including TNF-α Pathway and Downstream Inflammatory Processes

Authors

  • Jaffar O. Dawood College of Medicine, AL-Nahrain University, Baghdad, Iraq.
  • Ahmed Abu-Raghif College of Medicine, AL-Nahrain University, Baghdad, Iraq.

DOI:

https://doi.org/10.22317/jcms.v9i4.1407

Keywords:

Colitis, Ulcerative, Moxifloxacin, Sulfasalazine, NF-κB, TNF-α

Abstract

Objectives: The aim of the present study was to evaluate possible therapeutic effects of moxifloxacin against acetic acid-induced colitis in a rat model.

Methods: Forty adult Wistar rats were separated into 4 groups, including the negative control group, acetic acid (AA) group, AA + sulfasalazine (100 mg/kg/day) group, and AA+ moxifloxacin (MFX) (8 mg/kg/day) group. Experimental colitis was induced in rats by rectal administration of (4%v/v) acetic acid. Rats with colitis were received either MFX 8mg/kg/day or sulfasalazine 100mg/kg orally for 7days.The parameters measured are macroscopical assessment, colon weight (indicator of edema) and the measurement of concentrations of the proinflammatory cytokine TNF-α, oxidative stress marker malondialdehyde (MDA), adhesion molecule selectin and the inflammatory mediator NF-κB in colonic tissue homogenate.

Results: This study had shown that AA elevate macroscopical scores, colon weight and biochemical homogenate parameters and all measured parameters were significantly reduced by both moxifloxacin and sulfasalazine with nonsignificant difference between them.

Conclusions: The study explain that moxifloxacin possesses therapeutic potential in in AA induced colitis and its anti-inflammatory actions may involve inhibition of NF-κB inflammatory pathways including TNF-α pathway with its downstream inflammatory process such as elevation of adhesion molecule synthesis and oxidative species overproduction in the colonic tissues.

References

Saez, A., Herrero-Fernandez, B., Gomez-Bris, R., Sánchez-Martinez, H., & Gonzalez-Granado, J. M. (2023). Pathophysiology of Inflammatory Bowel Disease: Innate Immune System. International Journal of Molecular Sciences, 24(2), 1526.‏

Rehman, N. U., Ansari, M. N., Palla, A. H., Karim, A., Imam, F., Raish, M., ... & Noman, M. (2022). Myrica salicifolia Hochst. ex A. Rich. suppress acetic acid-induced ulcerative colitis in rats by reducing TNF-alpha and interleukin-6, oxidative stress parameters and improving mucosal protection. Human & experimental toxicology, 41, 09603271221102518.‏

Ansari, M. N., Rehman, N. U., Karim, A., Soliman, G. A., Ganaie, M. A., Raish, M., & Hamad, A. M. (2021). Role of oxidative stress and inflammatory cytokines (Tnf-α and il-6) in acetic acid-induced ulcerative colitis in rats: Ameliorated by otostegia fruticosa. Life, 11(3), 195.‏

Abdelmonaem, A. A., Abdelzaher, W. Y., Gaber, A. E., Seham, A., & Hafez, H. M. (2021). Possible protective effects of sulfasalazine on acetic acid-induced colitis in rats through its effect on oxidative stress and proinflammatory mediators. Minia Journal of Medical Research, 32(4), 30-37.‏

Alsharif, I. A., Fayed, H. M., Abdel-Rahman, R. F., Abd-Elsalam, R. M., & Ogaly, H. A. (2022). Miconazole Mitigates Acetic Acid-Induced Experimental Colitis in Rats: Insight into Inflammation, Oxidative Stress and Keap1/Nrf-2 Signaling Crosstalk. Biology, 11(2), 303.‏

Rafeeq, M., Murad, H. A. S., Abdallah, H. M., & El-Halawany, A. M. (2021). Protective effect of 6-paradol in acetic acid-induced ulcerative colitis in rats. BMC complementary medicine and therapies, 21(1), 1-10.‏

Alzoghaibi, M. A., Al Mofleh, I. A., & Al-Jebreen, A. M. (2007). Lipid peroxides in patients with inflammatory bowel disease. Saudi Journal of Gastroenterology, 13(4), 187-190.‏

Cagin, Y. F., Parlakpinar, H., Vardi, N., Polat, A., Atayan, Y., Erdogan, M. A., & Tanbek, K. (2016). Effects of dexpanthenol on acetic acid induced colitis in rats. Experimental and therapeutic medicine, 12(5), 2958-2964.‏

Schürmann, G. M., Bishop, A. E., Facer, P., Vecchio, M., Lee, J. C., Rampton, D. S., & Polak, J. M. (1995). Increased expression of cell adhesion molecule P-selectin in active inflammatory bowel disease. Gut, 36(3), 411-418.‏

Rivera-Nieves, J., Burcin, T. L., Olson, T. S., Morris, M. A., McDuffie, M., Cominelli, F., & Ley, K. (2006). Critical role of endothelial P-selectin glycoprotein ligand 1 in chronic murine ileitis. The Journal of experimental medicine, 203(4), 907-917.‏

Lu, P. D., & Zhao, Y. H. (2020). Targeting NF-κB pathway for treating ulcerative colitis: comprehensive regulatory characteristics of Chinese medicines. Chinese medicine, 15(1), 1-25.‏

Qiu, Z., Yuan, H., Li, N., Yang, X., Hu, X., Su, F., & Chen, B. (2018). Bidirectional effects of moxifloxacin on the pro inflammatory response in lipopolysaccharide stimulated mouse peritoneal macrophages. Molecular Medicine Reports, 18(6), 5399-5408.‏

Weiss, T., Shalit, I., Blau, H., Werber, S., Halperin, D., Levitov, A., & Fabian, I. (2004). Anti-inflammatory effects of moxifloxacin on activated human monocytic cells: inhibition of NF-κB and mitogen-activated protein kinase activation and of synthesis of proinflammatory cytokines. Antimicrobial agents and chemotherapy, 48(6), 1974-1982.‏

Otu‐Boakye, S. A., Yeboah, K. O., Boakye‐Gyasi, E., Oppong‐Kyekyeku, J., Okyere, P. D., & Osafo, N. (2023). Acetic acid‐induced colitis modulating potential of total crude alkaloidal extract of Picralima nitida seeds in rats. Immunity, Inflammation and Disease, 11(5), e855.

Manna, M. J., Abu-Raghif, A., & Alsaraf, K. M. (2017). Therapeutic effect of sildenafil in experimental colitis through anti-oxidative stress and inhibition of adhesion molecules. J Pharmaceut Sci Res, 9, 1615-23.‏

Bobde S., Keny R. V., Dighe P., Deshpande M. (2013) “Design and Evaluation of In Situ Gelling Systems of Moxifloxacin Hydrochloride in the Treatment of Bacterial Eye Infections” International Journal of Pharmaceutical and Phytopharmacological Research, ISSN (Online) 2249-6084 (Print) 2250-1029.

Ore, A., & Olayinka, E. T. (2015). Influence of moxifloxacin on hepatic redox status and plasma biomarkers of hepatotoxicity and nephrotoxicity in rat. Biochemistry research international, 2015.‏

Oubaid, E. N., Abu-Raghif, A., & Al-Sudani, I. M. (2023). Ibudilast ameliorates experimentally induced colitis in rats via down-regulation of proinflammatory cytokines and myeloperoxidase enzyme activity. Pharmacia, 70(1), 187-195.‏

ELK Biotechnology, manufacturer instructions of Rat TNF-α (Tumor Necrosis Factor Alpha) ELISA kit, manufacturer name of kit document (Cat: ELK1396).

ELK Biotechnology, manufacturer instructions of Rat SELE (Selectin, Endothelium) ELISA kit, manufacturer name of kit document (Cat: ELK1587).

ELK Biotechnology, manufacturer instructions of Rat MDA(Malondialdehyde) ELISA kit, manufacturer name of kit document (Cat: ELK8612).

ELK Biotechnology, manufacturer instructions of Rat Nuclear Factor Kappa B (NF-κB) ELISA kit, manufacturer name of kit document (Cat: ELK5691).

Vaughn, B. P., & Moss, A. C. (2013). Novel treatment options for ulcerative colitis. Clinical investigation, 3(11), 1057.‏

Niu, X., Zhang, H., Li, W., Wang, Y., Mu, Q., Wang, X., ... & Yao, H. (2015). Protective effect of cavidine on acetic acid-induced murine colitis via regulating antioxidant, cytokine profile and NF-κB signal transduction pathways. Chemico-biological interactions, 239, 34-45.

‏Shahid, M., Raish, M., Ahmad, A., Bin Jardan, Y. A., Ansari, M. A., Ahad, A., ... & Al-Jenoobi, F. I. (2022). Sinapic acid ameliorates acetic acid-induced ulcerative colitis in rats by suppressing inflammation, oxidative stress, and apoptosis. Molecules, 27(13), 4139.‏

Özsoy, Ş., Özsoy, Z., Gevrek, F., & Yeniova, A. Ö. (2023). Protective role of vitamin B12 on acetic acid induced colitis in rats. Turkish Journal of Surgery, 39(1), 007-016.‏

Ghasemi-Dehnoo, M., Safari, A. A., Rahimi-Madiseh, M., Lorigooini, Z., Moradi, M. T., & Amini-Khoei, H. (2022). Anethole Ameliorates Acetic Acid-Induced Colitis in Mice: Anti-Inflammatory and Antioxidant Effects. Evidence-Based Complementary and Alternative Medicine, 2022.‏

Dejban, P., Sahraei, M., Chamanara, M., Dehpour, A., & Rashidian, A. (2021). Anti‐inflammatory effect of amitriptyline in a rat model of acetic acid‐induced colitis: the involvement of the TLR4/NF‐kB signaling pathway. Fundamental & Clinical Pharmacology, 35(5), 843-851.‏

Bastaki, S. M., Adeghate, E., Amir, N., Ojha, S., & Oz, M. (2018). Menthol inhibits oxidative stress and inflammation in acetic acid-induced colitis in rat colonic mucosa. American journal of translational research, 10(12), 4210.‏

El-Tanbouly, G. S., & Abdelrahman, R. S. (2022). The emerging coloprotective effect of sildenafil against ulcerative colitis in rats via exerting counterbalance between NF-κB signaling and Nrf-2/HO-1 pathway. Inflammopharmacology, 30(4), 1351-1362.‏

El-Akabawy, G., & El-Sherif, N. M. (2019). Zeaxanthin exerts protective effects on acetic acid-induced colitis in rats via modulation of pro-inflammatory cytokines and oxidative stress. Biomedicine & Pharmacotherapy, 111, 841-851.‏

Fatani, A. J., Alrojayee, F. S., Parmar, M. Y., Abuohashish, H. M., Ahmed, M. M., & Al Rejaie, S. S. (2016). Myrrh attenuates oxidative and inflammatory processes in acetic acid-induced ulcerative colitis. Experimental and therapeutic medicine, 12(2), 730-738.‏

Wang, G., Xu, B., Shi, F., Du, M., Li, Y., Yu, T., & Chen, L. (2019). Protective effect of methane-rich saline on acetic acid-induced ulcerative colitis via blocking the TLR4/NF-κB/MAPK pathway and promoting IL-10/JAK1/STAT3-mediated anti-inflammatory response. Oxidative Medicine and Cellular Longevity, 2019.‏

Gupta, G. S., & Gupta, G. S. (2012). Selectins and associated adhesion proteins in inflammatory disorders. Animal Lectins: Form, Function and Clinical Applications, 991-1026.

Pooley, N., Ghosh, L., & Sharon, P. (1995). Up-regulation of E-selectin and intercellular adhesion molecule-1 differs between Crohn's disease and ulcerative colitis. Digestive diseases and sciences, 40, 219-225.

Sasakawa, T., Sasakawa, Y., Masunaga, T., Fujitsu, T., Hirayama, Y., Ohkubo, Y., & Mutoh, S. (2005). FK506 suppresses E-selectin, ICAM-1 and VCAM-1 expression on vascular endothelial cells by inhibiting tumor necrosis factor α secretion from peripheral blood mononuclear cells. Cytokine, 29(2), 67-71.‏

Salama, R. M., Darwish, S. F., Shaffei, I. E., Elmongy, N. F., Afifi, M. S., & Abdel-Latif, G. A. (2020). Protective effect of Morus macroura Miq. fruit extract against acetic acid-induced ulcerative colitis in rats: Involvement of miRNA-223 and TNFα/NFκB/NLRP3 inflammatory pathway. bioRxiv, 2020-12.‏

GAN, H. T., CHEN, Y. Q., & Ouyang, Q. (2005). Sulfasalazine inhibits activation of nuclear factor‐κB in patients with ulcerative colitis. Journal of gastroenterology and hepatology, 20(7), 1016-1024.‏

Beisswenger, C., Honecker, A., Kamyschnikow, A., Bischoff, M., Tschernig, T., & Bals, R. (2014). Moxifloxacin modulates inflammation during murine pneumonia. Respiratory research, 15(1), 1-10.‏

Zimmermann, G. S., Neurohr, C., Villena-Hermoza, H., Hatz, R., & Behr, J. (2009). Anti-inflammatory effects of antibacterials on human bronchial epithelial cells. Respiratory research, 10(1), 1-8.‏

Downloads

Published

2023-08-26

How to Cite

Dawood, J. O. ., & Abu-Raghif, A. . (2023). Moxifloxacin’s Therapeutic Effects in AA-Induced Colitis: Anti-Inflammatory Action through NF-κB Pathway Inhibition, Including TNF-α Pathway and Downstream Inflammatory Processes . Journal of Contemporary Medical Sciences, 9(4), 239–244. https://doi.org/10.22317/jcms.v9i4.1407