Molecular Identification and Detection of Virulence Genes Among Pseudomonas Aeruginosa Isolated from Burns Infections


  • Reem Polse Department of Biology, Faculty of Science, University of Zakho, Zakho, Iraq
  • Haval Khalid Department of Biology, Faculty of Science, University of Zakho, Zakho, Iraq
  • Wijdan Mero Department of Biology, Faculty of Science, University of Zakho, Zakho, Iraq; College of Science, Nawroz University, Duhok, Iraq



Pseudomonas aeruginosa, toxA, lasB, Burn wound infection.


Objective: Virulence factors are substances produced by pathogenic Pseudomonas aeruginosa that contribute significantly to the etiology of disease. These virulence factors are encoded by virulence genes found on the Pseudomonas aeruginosa chromosome.

Methods: Between July 2021 and June 2022, 71 Pseudomonas aeruginosa isolates were identified from burn wounds at the Burn and Plastic Surgery Hospital in Duhok, Iraq. The lasB and toxA genes were identified using Polymerase Chain Reaction (PCR).

 Results: Only 26.36% (29/71) of the 71 Pseudomonas aeruginosa isolates were found in males, whereas 38.18% (42/71) were found in females. Furthermore, 76.06% (54/71) of the isolates were multidrug resistant. They demonstrated greater resistance to piperacillin, 98.59% resistance rates. Among the isolates analyzed, 35 (64.81%) were positive for toxA and 27 (50%) were positive for lasB genes.

Conclusion: Due to the limited number of effective medications against this bacteria that are currently available, all isolates must undergo antimicrobial susceptibility testing. By doing this, you can help manage the treatment plan and stop the emergence of resistance in burn units.



Wu M, Li X. Klebsiella pneumoniae and Pseudomonas aeruginosa. In Molecular medical microbiology. 2015; 3:1547-1564. Academic Press.

Diggle SP, Whiteley M. Microbe Profile: Pseudomonas aeruginosa: opportunistic pathogen and lab rat. Microbiology. 2020;166(1):30. doi: 10.1099/mic.0.000860

Pachori P, Gothalwal R, Gandhi P. Emergence of antibiotic resistance Pseudomonas aeruginosa in intensive care unit; a critical review. Genes & diseases. 2019;6(2):109-119.

Pang Z, Raudonis R, Glick BR, Lin TJ, Cheng Z. Antibiotic resistance in Pseudomonas aeruginosa: mechanisms and alternative therapeutic strategies. Biotechnology advances. 2019;37(1):177-192.

Abdelrahman DN, Taha AA, Dafaallah MM, Mohammed AA, El Hussein AR, Hashim AI, Hamedelnil YF, Altayb HN. β-lactamases (bla TEM, bla SHV, bla CTXM-1, bla VEB, bla OXA-1) and class C β-lactamases gene frequency in Pseudomonas aeruginosa isolated from various clinical specimens in Khartoum State, Sudan: a cross sectional study. F1000Research. 2020;9:774 .doi: 10.12688/f1000research.24818.3

Najem SA. (2022). Bacteriological Study on Multidrug Resistance Genes in Pseudomonas aeruginosa Isolated from Different Clinical Samples in Al-Najaf Province. MS.C. Thesis, Faculty of Science, University of Kufa.

Chaudhary NA, Munawar MD, Khan MT, Rehan K, Sadiq A, Bhatti HW, Rizvi ZA. Epidemiology, bacteriological profile, and antibiotic sensitivity pattern of burn wounds in the burn unit of a tertiary care hospital. Cureus. 2019;11(6):e4794 DOI: 10.7759/cureus.4794

Newman JW, Floyd RV, Fothergill JL. The contribution of Pseudomonas aeruginosa virulence factors and host factors in the establishment of urinary tract infections. FEMS microbiology letters. 2017;364(15):fnx124.

Hossein HM, Mehdi RM, Masoumeh A, Gholamreza A, Masoud DM. Molecular evaluation of pseudomonas aeruginosa isolated from patients in burn ward. ICU and ITU in a number of hospital in Kerman province. 2015;5(S2):1428-1431.

Nikbin VS, Aslani MM, Sharafi Z, Hashemipour M, Shahcheraghi F, Ebrahimipour GH. Molecular identification and detection of virulence genes among Pseudomonas aeruginosa isolated from different infectious origins. Iran J Microbiol. 2012;4(3):118-123.

Leboffe MJ, Pierce BE. Photographic Atlas for the microbiology laboratory. 4th editio. USA: Douglas N. Morton. 2011.

Spilker T, Coenye T, Vandamme P, LiPuma JJ. PCR-based assay for differentiation of Pseudomonas aeruginosa from other Pseudomonas species recovered from cystic fibrosis patients. Journal of clinical microbiology. 2004; 42(5):2074-2079.


Hudzicki J. Kirby-Bauer disk diffusion susceptibility test protocol. American society for microbiology. 2009; 15:55-63.

CLSI (Clinical and Laboratory Standards Institute). Performance Standards for Antimicrobial Susceptibility Testing, Twentieth Informational Supplement, CLSI Document M100- Ed32 February 2022 Replaces M100-Ed31.

Maniatis T, Fritsch EF, Sambrook J. Molecular cloning a Laboratory Manual Gold Spring Harber Laboratory. New York, Biotechnology. 1982; 5(6):257-261.

Aljebory IS. PCR detection of some virulence genes of pseudomonas aeruginosa in Kirkuk city, Iraq. Journal of Pharmaceutical Sciences and Research. 2018;10(5):1068-1071.

Meradji S, Barguigua A, cherif Bentakouk M, Nayme K, Zerouali K, Mazouz D, Chettibi H, Timinouni M. Epidemiology and virulence of VIM-4 metallo-beta-lactamase-producing Pseudomonas aeruginosa isolated from burn patients in eastern Algeria. Burns. 2016; 42(4):906-918.

Alkhulaifi ZM, Mohammed KA. The Prevalence of Cephalosporins resistance in Pseudomonas aeruginosa isolated from clinical specimens in Basra, Iraq. University of Thi-Qar Journal of Science. 2023;10(1 (SI)).


Essayagh M, Essayagh T, Essayagh S, El Hamzaoui S. Epidemiology of burn wound infection in Rabat, Morocco: Three-year review. Médecine et Santé Tropicales. 2014; 24(2):157-164. DOI : 10.1684/mst.2014.0315

Mahmoud AB, Zahran WA, Hindawi GR, Labib AZ, Galal R. Prevalence of multidrug-resistant Pseudomonas aeruginosa in patients with nosocomial infections at a university hospital in Egypt, with special reference to typing methods. J Virol Microbiol. 2013; 13:165-59. DOI: 10.5171/2013.290047

Jalil MB, Abdul-Hussien ZR, Al.Hmudi HA. Isolation and identification of multi drug resistant biofilm producer Pseudomonas aeruginosa from patients with burn wound infection in Basra province/Iraq. IJDR. 2017; 7(11): 17258-17262.

Othman N, Babakir-Mina M, Noori CK, Rashid PY. Pseudomonas aeruginosa infection in burn patients in Sulaimaniyah, Iraq: risk factors and antibiotic resistance rates. The Journal of Infection in Developing Countries. 2014; 8(11):1498-1502. doi: 10.3855/jidc.4707.

Khosravi AD, Taee S, Dezfuli AA, Meghdadi H, Shafie F. Investigation of the prevalence of genes conferring resistance to carbapenems in Pseudomonas aeruginosa isolates from burn patients. Infection and drug resistance. 2019; 12:1153-1159.

Khoshnood S, Khosravi AD, Jomehzadeh N, Montazeri EA, Motahar M, Shahi F, Saki M, Seyed-Mohammadi S. Distribution of extended-spectrum β-lactamase genes in antibiotic-resistant strains of Pseudomonas aeruginosa obtained from burn patients in Ahvaz, Iran. Journal of Acute Disease. 2019; 8(2):53-57. DOI: 10.4103/2221-6189.254426

Rashid KJ, Babakir-Mina M, Abdilkarim DA. Characteristics of Burn Injury and Factors in Relation to Infection among Pediatric Patients. MOJ Gerontol Ger. 2017; 1(3): 57-66. DOI:10.15406/MOJGG.2017.01.00013

Al-Aali KY. Microbial profile of burn wound infections in burn patients, Taif, Saudi Arabia. Arch Clin Microbiol. 2016;7(2):1-9.

Sewunet T, Demissie Y, Mihret A, Abebe T. Bacterial profile and antimicrobial susceptibility pattern of isolates among burn patients at Yekatit 12 hospital burn center, Addis Ababa, Ethiopia. Ethiopian journal of health sciences. 2013; 23(3):209-216.


Mirzaei B, Bazgir ZN, Goli HR, Iranpour F, Mohammadi F, Babaei R. Prevalence of multi-drug resistant (MDR) and extensively drug-resistant (XDR) phenotypes of Pseudomonas aeruginosa and Acinetobacter baumannii isolated in clinical samples from Northeast of Iran. BMC research notes. 2020; 13:1-6.

Ahmadian L, Haghshenas MR, Mirzaei B, Norouzi Bazgir Z, Goli HR. Distribution and molecular characterization of resistance gene cassettes containing class 1 integrons in multi-drug resistant (MDR) clinical isolates of Pseudomonas aeruginosa. Infection and Drug Resistance. 2020; 13:2773-2781.

Alkhudhairy MK, Al-Shammari MM. Prevalence of metallo-β-lactamase–producing Pseudomonas aeruginosa isolated from diabetic foot infections in Iraq. New microbes and new infections. 2020; 35:100661.

de Almeida KD, Calomino MA, Deutsch G, de Castilho SR, de Paula GR, Esper LM, Teixeira LA. Molecular characterization of multidrug-resistant (MDR) Pseudomonas aeruginosa isolated in a burn center. Burns. 2017; 43(1):137-43.

Kishk RM, Abdalla MO, Hashish AA, Nemr NA, El Nahhas N, Alkahtani S, Abdel-Daim MM, Kishk SM. Efflux MexAB-mediated resistance in P. aeruginosa isolated from patients with healthcare associated infections. Pathogens. 2020; 9(6):471.

Al-Orphaly M, Hadi HA, Eltayeb FK, Al-Hail H, Samuel BG, Sultan AA, Skariah S. Epidemiology of multidrug-resistant Pseudomonas aeruginosa in the Middle East and North Africa Region. Msphere. 2021; 6(3):e00202-21.


Peymani A, Naserpour-Farivar T, Zare E, Azarhoosh KH. Distribution of blaTEM, blaSHV, and blaCTX-M genes among ESBL-producing P. aeruginosa isolated from Qazvin and Tehran hospitals, Iran. J Prev Med Hyg. 2017; 58(2): E155- E160.

Qader MK, Solmaz H, Merza NS. Molecular Typing and Virulence Analysis of Pseudomonas aerugınosa Isolated From Burn Infections Recovered From Duhok and Erbil Hospitals/Iraq. UKH Journal of Science and Engineering. 2020; 4(2):1-10. DOI:10.25079/ukhjse.v4n2y2020.pp1-10

Doi Y. Treatment options for carbapenem-resistant gram-negative bacterial infections. Clinical Infectious Diseases. 2019; 69(Supplement_7):S565-S575.

Haghighifar E, Dolatabadi RK, Norouzi F. Prevalence of blaVEB and blaTEM genes, antimicrobial resistance pattern and biofilm formation in clinical isolates of Pseudomonas aeruginosa from burn patients in Isfahan, Iran. Gene Reports. 2021; 23:101157.

Adjei CB, Govinden U, Essack SY, Moodley K. Molecular characterisation of multidrug-resistant Pseudomonas aeruginosa from a private hospital in Durban, South Africa. Southern African Journal of Infectious Diseases. 2018; 33(2):38-41.

AL-Shamaa NF, Abu-Risha RA, AL-Faham MA. Virulence genes profile of Pseudomonas aeruginosa local isolates from burns and wounds. Iraqi journal of biotechnology. 2016;15(3).

Al-Dahmoshi HO, Al-Khafaji NS, Jeyad AA, Shareef HK, Al-Jebori RF. Molecular detection of some virulence traits among Pseudomonas aeruginosa isolates, Hilla-Iraq. Biomedical and Pharmacology Journal. 2018; 11(2):835-42. DOI :

Khan AA, Cerniglia CE. Detection of Pseudomonas aeruginosa from clinical and environmental samples by amplification of the exotoxin A gene using PCR. Applied and environmental microbiology. 1994; 60(10):3739-3745. DOI:

Rawya B, Magda el N, Amr el S, Ahmed el D. P aeruginosa exotoxin A as a virulence factor in burn wound infections. EJMM-Egyptian Journal of Medical Microbiology. 2008; 17: 125-133.

Stover CK, Pham XQ, Erwin AL, Mizoguchi SD, Warrener P, Hickey MJ, Brinkman FS, Hufnagle WO, Kowalik DJ, Lagrou M, Garber RL. Complete genome sequence of Pseudomonas aeruginosa PAO1, an opportunistic pathogen. Nature. 2000; 406(6799):959-64.




How to Cite

Polse, R. ., Khalid, H., & Mero, W. (2024). Molecular Identification and Detection of Virulence Genes Among Pseudomonas Aeruginosa Isolated from Burns Infections. Journal of Contemporary Medical Sciences, 10(1).