Apelin as a potential marker in Iraqi children with Type 1 Diabetes Mellitus

Authors

  • Noor Thair Tahir National Diabetes Center, Mustansiriyah University, Baghdad, Iraq
  • Israa Qusay Falih Department of Chemistry, College of Sciences, University of Misan, Mayssan, Iraq
  • Mithal R. Alkubaisi College of Medicine, University of Anbar, Ramadi, Iraq
  • Abdilya Riyadh Alabdaly College of Medicine, University of Jordan, Amman, Jordan

DOI:

https://doi.org/10.22317/jcms.v9i6.1425

Keywords:

T1DM, Apelin, Lipid profile, children, glycosylated hemoglobin (HbA1c), kidney function test .

Abstract

Objective: This study aims to evaluate apelin levels and their correlation with key metabolic parameters in pre-pubertal and pubertal
individuals with type 1 diabetes in Iraq, providing insights into apelin's role in diabetes pathogenesis and its potential as an early diagnostic marker for cardiovascular disease.

Methods: Ninety children, divided into pre-pubertal T1DM, pubertal T1DM, and healthy subjects, underwent measurements of various
biochemical parameters, including apelin, fasting blood glucose, lipid profile, and thyroid hormones.

Results: Positive correlations (P < 0.01) were found between apelin levels and FSB, TG, BMI, HbA1c, TC, TSH, and a negative correlation with HDL-C in pubertal and pre-pubertal groups, revealing potential links between apelin, glucose, and insulin sensitivity.


Conclusion: The study suggests apelin's involvement in diabetes pathogenesis, highlighting its rise in adulthood as an indicator of diabetes complications and its potential use as a diagnostic marker for early detection of cardiovascular disease in individuals with T1DM.

References

Chadt, A., & Al-Hasani, H. (2020). Glucose transporters in adipose tissue, liver, and skeletal muscle in meta-bolic health and disease. Pflügers Archiv-European Journal of Physiology, 472, 1273-1298.

Chadt, A., & Al-Hasani, H. (2020). Glucose transporters in adipose tissue, liver, and skeletal muscle in meta-bolic health and disease. Pflügers Archiv-European Journal of Physiology, 472, 1273-1298.

Arafat, A. M., Kaczmarek, P., Skrzypski, M., Pruszyńska-Oszmalek, E., Kołodziejski, P., Szczepankiewicz, D., ... & Strowski, M. Z. (2013). Glucagon increases circulating fibroblast growth factor 21 independently of en-dogenous insulin levels: a novel mechanism of glucagon-stimulated lipolysis?. Diabetologia, 56, 588-597.

Ullah, H., De Filippis, A., Santarcangelo, C., & Daglia, M. (2020). Epigenetic regulation by polyphenols in di-abetes and related complications. Mediterranean Journal of Nutrition and Metabolism, 13(4), 289-310.

Karamanakos, G., Kokkinos, A., Dalamaga, M., & Liatis, S. (2022). Highlighting the role of obesity and insulin resistance in type 1 diabetes and its associated cardiometabolic complications. Current obesity reports, 11(3), 180-202.

Mohamed Shaffril, H. A., Samsuddin, S. F., & Abu Samah, A. (2021). The ABC of systematic literature review: the basic methodological guidance for beginners. Quality & Quantity, 55, 1319-1346.

Recinella, L., Orlando, G., Ferrante, C., Chiavaroli, A., Brunetti, L., & Leone, S. (2020). Adipokines: new po-tential therapeutic target for obesity and metabolic, rheumatic, and cardiovascular diseases. Frontiers in physiology, 11, 578966.

Mughal, A., & O'Rourke, S. T. (2018). Vascular effects of apelin: Mechanisms and therapeutic poten-tial. Pharmacology & therapeutics, 190, 139-147.

Aykan, M. B., & Tasci, I. (2019). Interpretation of blood apelin level across different clinical pictures of diabetes mellitus. Diabetes Research and Clinical Practice, 152, 183-184.

Liu, W., Yan, J., Pan, W., & Tang, M. (2020). Apelin/Elabela-APJ: a novel therapeutic target in the cardio-vascular system. Annals of Translational Medicine, 8(5).

Sabry, R. N., El Wakeel, M. A., El-Kassas, G. M., Amer, A. F., El Batal, W. H., El-Zayat, S. R., & Abou-El-Asrar, M. (2018). Serum apelin: a new marker of early atherosclerosis in children with type 1 diabetes mellitus. Open access Macedonian journal of medical sciences, 6(4), 613.

El Wakeel, M. E. S., Ahmad, I. H., Mohammed, M. A., Ali, S. M. O., Abd El Wahab, M. K., & Shipl, W. M. (2022). Correlation of serum apelin level with carotid intima–media thickness and insulin resistance in a sample of Egyptian patients with type 2 diabetes mellitus. Journal of Research in Medical Sciences: The Official Journal of Isfahan University of Medical Sciences, 27.

O'Harte, F. P., Parthsarathy, V., Hogg, C., & Flatt, P. R. (2017). Acylated apelin-13 amide analogues exhibit enzyme resistance and prolonged insulin releasing, glucose lowering and anorexic properties. Biochemical pharmacology, 146, 165-173.

Eom, Y. S., Wilson, J. R., & Bernet, V. J. (2022). Links between thyroid disorders and glucose homeosta-sis. Diabetes & Metabolism Journal, 46(2), 239-256.

Inada, A., Inada, O., Yasunami, Y., Arakawa, K., Nabeshima, Y. I., & Fukatsu, A. (2022). Amelioration of murine diabetic nephropathy with a SGLT2 inhibitor is associated with suppressing abnormal expression of hypox-ia-inducible factors. The American Journal of Pathology, 192(7), 1028-1052.

Singh, J., Jain, A., Bhamra, R., Rathi, V., & Dhingra, A. K. (2023). The mechanistic role of different mediators in the pathophysiology of nephropathy: A review. Current Drug Targets, 24(2), 104-117.

Łukawska-Tatarczuk, M., Franek, E., Czupryniak, L., Joniec-Maciejak, I., Pawlak, A., Wojnar, E., ... & Mrozi-kiewicz-Rakowska, B. (2021). Sirtuin 1, visfatin and IL-27 serum levels of type 1 diabetic females in relation to cardiovascular parameters and autoimmune thyroid disease. Biomolecules, 11(8), 1110.

Han, X., Zhang, D. L., Yin, D. X., Zhang, Q. D., & Liu, W. H. (2013). Apelin-13 deteriorates hypertension in rats after damage of the vascular endothelium by ADMA. Canadian journal of physiology and pharmacology, 91(9), 708-714.

Sahinturk, S., Demirel, S., Ozyener, F., & Isbil, N. (2021). [Pyr1] apelin-13 relaxes the rat thoracic aorta via APJ, NO, AMPK, and potassium channels. General Physiology & Biophysics, 40(5). Sahinturk, S., Demirel, S., Ozyener, F., & Isbil, N. (2021). [Pyr1] apelin-13 relaxes the rat thoracic aorta via APJ, NO, AMPK, and potas-sium channels. General Physiology & Biophysics, 40(5).

Li, C., Cheng, H., Adhikari, B. K., Wang, S., Yang, N., Liu, W., ... & Wang, Y. (2022). The Role of Apelin–APJ System in Diabetes and Obesity. Frontiers in Endocrinology, 13, 820002.

Jiang, Y., Yan, M., Wang, C., Wang, Q., Chen, X., Zhang, R., ... & Chen, J. (2021). The effects of apelin and elabela ligands on apelin receptor distinct signaling profiles. Frontiers in Pharmacology, 12, 630548.

Castan-Laurell, I., Masri, B., & Valet, P. (2019). The apelin/APJ system as a therapeutic target in metabolic diseases. Expert opinion on therapeutic targets, 23(3), 215-225.

Kadoglou, N. P., Tsanikidis, H., Kapelouzou, A., Vrabas, I., Vitta, I., Karayannacos, P. E., ... & Sailer, N. (2010). Effects of rosiglitazone and metformin treatment on apelin, visfatin, and ghrelin levels in patients with type 2 diabetes mellitus. Metabolism, 59(3), 373-379.

Soriguer, F., Garrido-Sanchez, L., Garcia-Serrano, S., Garcia-Almeida, J. M., Garcia-Arnes, J., Tinahones, F. J., & Garcia-Fuentes, E. (2009). Apelin levels are increased in morbidly obese subjects with type 2 diabetes mellitus. Obesity surgery, 19, 1574-1580.

Cabia, B., Andrade, S., Carreira, M. C., Casanueva, F. F., & Crujeiras, A. B. (2016). A role for novel adipose tissue‐secreted factors in obesity‐related carcinogenesis. Obesity Reviews, 17(4), 361-376.

Kolahdouzi, S., Baghadam, M., Kani-Golzar, F. A., Saeidi, A., Jabbour, G., Ayadi, A., ... & Zouhal, H. (2019). Progressive circuit resistance training improves inflammatory biomarkers and insulin resistance in obese men. Physiology & behavior, 205, 15-21.

Elmageed Mohammed, R. M. A., & Hafez Ahmed, M. H. (2021). Thyroid Disorders and Diabetes Mellitus: Prevalence and Assosciation. Journal of Advances in Medicine and Medical Research, 33(23), 220-228.

Abdelgawad, S. S., Zahran, F. M., Elsharkawy, A. A., Yahya, R. S., & Zakaria, M. M. (2021). Role of Apelin in Egyptian Children with Type 1 Diabetes Mellitus. Annals of the Romanian Society for Cell Biology, 8104-8115.

Sabry, R. N., El Wakeel, M. A., El-Kassas, G. M., Amer, A. F., El Batal, W. H., El-Zayat, S. R., & Abou-El-Asrar, M. (2018). Serum apelin: a new marker of early atherosclerosis in children with type 1 diabetes mellitus. Open access Macedonian journal of medical sciences, 6(4), 613.

Downloads

Published

2023-12-26

How to Cite

Thair Tahir, N. ., Qusay Falih , I. ., R. Alkubaisi , M. ., & Riyadh Alabdaly, A. . (2023). Apelin as a potential marker in Iraqi children with Type 1 Diabetes Mellitus . Journal of Contemporary Medical Sciences, 9(6). https://doi.org/10.22317/jcms.v9i6.1425