The Protective Effect of Ramelteon and in combination with Dexamethasone on the Lipopolysaccharide-induced Cytokine Storm in mice


  • Marwa A. Al-dabbagh Department of Pharmacology, College of Medicine, Al Nahrain University, Baghdad, Iraq.
  • Hayder B. Sahib



Cytokine Storm, Inflammation, Lipopolysaccharide, ramelteon, dexamethasone.


Cytokine Storm Syndrome (CSs) is a potentially life threatening condition, characterized by robust elevated; of circulating pro- inflammatory cytokines; occurring after a hyperactive immune system. Is a well-known as a worldwide health problem, leading to multi-organ failure and death. Objectives: This study was carried out to investigate the protective role and probability of additive or synergistic anti-inflammatory activity; of ramelteon and in combination with dexamethasone on the lipopolysaccharide (LPS) induced “Cytokine Storm” on mice model and its potential regulatory mechanism(s). Methods:  Sixty Swiss albino male mice of ;( 25 ± 5 grams; 8-12 weeks) had free access to food and water. After 2weeks of adaptation, mice; randomly separated in five groups (n =12): Group I, mice received (0.9% N\S i.p.); Group II, mice received (5mg\kg i.p.) LPS only .Group III, mice received (2.5mg/kg, i.p.) dexamethasone, Group IV, mice received (100mg/kg i.p.)  ramelteon, Group V, mice received half dose of dexamethasone+ ramelteon combination (1.25 mg\kg i.p +50mg\kg i.p). For systematic inflammatory stimulation mimicking “cytokine storm” LPS; E. coli O55:B5 (5mg\kg i.p.) was induced within one hr. After 48h the effects of interventional agents and vehicle or LPS challenge; on lung, heart, liver, kidney histopathological changes, and levels of inflammatory cytokines :( IL-6, IL8 IL-1β, and TNF-α) in the serum were detected. Results: IL-1β, IL-6, IL8 and TNF-α elevated serum levels significantly reduced (p<0.001) in all treatment group. Additionally, they ameliorated the histopathological changes induced by (LPS) and improving macroscopic scores (p<0.001). Conclusion: In conclusion, ramelteon treatment had a diverse protective effects against “Cytokine Storm”  with a mechanism  based on attenuation serum levels of inflammatory cytokines (IL-1β, IL-6, IL-8 and TNF-α)and through reduction of histopathological damage during endotoxemia induced via LPS challenge on male mice model. RAM/DEX combination had superior advantage than an agent use alone probably via synergistic anti-inflammatory activity.


Pui Y. Lee, Randy Q. Cron; The Multifaceted Immunology of Cytokine Storm Syndrome. J Immunol 15 April 2023; 210 (8): 1015–1024.

Lapuente, J.P.; Gómez, G.; Marco-Brualla, J.; Fernández, P.; Desportes, P.; Sanz, J.; García-Gil, M.; Bermejo, F.; San Martín, J.V.; Algaba, A.; De Gregorio, J.C.; Lapuente, D.; De Gregorio, A.; Lapuente, B.; Gómez, S.; Andrés, M.d.l.V.; Anel, A. Evaluation in a Cytokine Storm Model In Vivo of the Safety and Efficacy of Intravenous Administration of PRS CK STORM (Standardized Conditioned Medium Obtained by Coculture of Monocytes and Mesenchymal Stromal Cells). Biomedicines 2022, 10, 1094.

Gu, J.; Han, B.; Wang, J. COVID-19: Gastrointestinal Manifestations and Potential Fecal-Oral Transmission. Gastroenterology 2020, 158, 1518–1519. [Google Scholar] [CrossRef]

Xiao, F.; Tang, M.; Zheng, X.; Liu, Y.; Li, X.; Shan, H. Evidence for Gastrointestinal Infection of SARS-CoV-2. Gastroenterology 2020, 158, 1831–1833.e3. [Google Scholar] [CrossRef]

Liu, Q.; Zhu, P. (EB virus-associated lymphoproliferative disorders and cytokine storm). Zhongguo Shi Yan Xue Ye Xue Za Zhi 2013, 21, 498–502. [Google Scholar]

Chousterman, B.G.; Swirski, F.K.; Weber, G.F. Cytokine storm and sepsis disease Pathogenesis. Semin. Immunopathol. 2017, 39, 517–528. [Google Scholar] [CrossRef] [PubMed]

Tiab, M.; Mechinaud, F.; Harousseau, J.L. Haemophagocytic syndrome associated with infections. Baillieres Best Pract. Res. Clin. Haematol. 2000, 13, 163–178. [Google Scholar] [CrossRef]

Grom, A.A.; Horne, A.; De Benedetti, F. Macrophage activation syndrome in the era of biologic therapy. Nat. Rev. Rheumatol. 2016, 12, 259–268. [Google Scholar] [CrossRef]

Makhija, R.; Kingsnorth, A.N. Cytokine storm in acute pancreatitis. J. Hepatobiliary Pancreat. Surg. 2002, 9, 401–410. [Google Scholar] [CrossRef] [PubMed]

Hu, B.; Huang, S.; Yin, L. The cytokine storm and COVID-19. J. Med. Virol. 2021, 93, 250–256. [Google Scholar] [CrossRef] [PubMed]

Rudd, K.E.; Johnson, S.C.; Agesa, K.M.; Shackelford, K.A.; Tsoi, D.; Kievlan, D.R.; Colombara, D.V.; Ikuta, K.S.; Kissoon, N.; Finfer, S.; et al. Global, regional, and national sepsis incidence and mortality, 1990–2017: Analysis for the Global Burden of Disease Study. Lancet 2020, 395, 200–211. [Google Scholar] [CrossRef][Green Version]

Taro, K.; Shizuo, A. Toll-like Receptors and Their Crosstalk with Other Innate Receptors in Infection and Immunity. Immunity 2011, 34, 637–650. [Google Scholar]

Liaudet L, Murthy KGK, Mabley JG, Pacher P, Soriano FG, Salzman AL, et al. Comparison of inflammation, organ damage, and oxidant stress induced by Salmonella enterica serovar muenchen flagellin and serovar enteritidis lipopolysaccharide. Infect Immun. (2002) 70:192–8. doi: 10.1128/IAI.70.1.192-198.2002

Root-Bernstein R. Synergistic Activation of Toll-Like and NOD Receptors by Complementary Antigens as Facilitators of Autoimmune Disease: Review, Model and Novel Predictions. International Journal of Molecular Sciences. 2020; 21(13):4645.

Kumar, V. Toll-like receptors in sepsis-associated cytokine storm and their endogenous negative regulators as future immunomodulatory targets. Int. Immunopharmacol. 2020, 89, 107087. [Google Scholar] [CrossRef] [PubMed]

Wang W, Ye L, Ye L, Li B, Gao B, Zeng Y, et al. Up-regulation of IL-6 and TNF-α induced by SARS-coronavirus spike protein in murine macrophages via NF-κB pathway. Virus Res. 2007;128:1–8. [PMC free article] [PubMed] [Google Scholar] [Ref list]

Fajgenbaum, D.C.; June, C.H. Cytokine Storm. N. Engl. J. Med. 2020, 383, 2255–2273. [Google Scholar] [CrossRef] [PubMed]

Martich GD, Danner RL, Ceska M, Suffredini AF. Detection of interleukin 8 and tumor necrosis factor in normal humans after intravenous endotoxin: the effect of antiinflammatory agents. J Exp Med. 1991 Apr 1;173(4):1021-4. doi: 10.1084/jem.173.4.1021. PMID: 2007851; PMCID: PMC2190822.

Teijaro, J.R. Cytokine storms in infection diseases. Semin. Immunopathol. 2017, 39, 501–503. [Google Scholar] [CrossRef][Green Version]

Mowla A, Sizdahkhani S, Dorche MS, Selvan P, Emanuel BA, Tenser MS, et al. Unusual pattern of arterial macrothrombosis causing stroke in a young adult recovered from COVID-19. J Stroke Cerebrovasc Dis. 2020;29:105353. [PMC free article] [PubMed] [Google Scholar] [Ref list]

Ramelteon . In: livertox: clinical and research information on drug-induced liver injury. Bethesda (MD). 2012. [PubMed] [Google Scholar]

Pandi-Perumal SR, Srinivasan V, Spence DW, et al. Ramelteon: a review of its therapeutic potential in sleep disorders. Adv Ther. 2009;26(6):613–626. [PubMed] [Google Scholar]

Ishibashi Y, Nishitani R, Shimura A, et al. Non-GABA sleep medications, suvorexant as risk factors for falls: case-control and case-crossover study. PLoS One. 2020;15(9):e0238723. [PMC free article] [PubMed] [Google Scholar] [Ref list]

Ramírez, Karol, Quesada-Yamasaki, Daniel, & Fornaguera-Trías, Jaime. (2019). A Protocol to Perform Systemic Lipopolysacharide (LPS) Challenge in Rats. Odovtos International Journal of Dental Sciences, 21(1), 53-66.

Ali H, Khan A, Ali J, Ullah H, Khan A, Ali H, Irshad N, Khan S. Attenuation of LPS-induced acute lung injury by continentalic acid in rodents through inhibition of inflammatory mediators correlates with increased Nrf2 protein expression. BMC Pharmacol Toxicol. 2020 Nov 25;21(1):81. doi: 10.1186/s40360-020-00458-7. PMID: 33239093; PMCID: PMC7687815.

Raduolovic K, Mak'Anyengo R, Kaya B, Steinert A, Niess JH. Injections of Lipopolysaccharide into Mice to Mimic Entrance of Microbial-derived Products After Intestinal Barrier Breach. J Vis Exp. 2018 May 2;(135):57610. doi: 10.3791/57610. Erratum in: J Vis Exp. 2018 Aug 4;(138): PMID: 29782025; PMCID: PMC6101093.

Du Y, Meng Y, Lv X, Guo L, Wang X, Su Z, Li L, Li N, Zhao S, Zhao L, Zhao X. Dexamethasone attenuates LPS-induced changes in expression of urea transporter and aquaporin proteins, ameliorating brain endotoxemia in mice. Int J Clin Exp Pathol. 2014 Dec 1;7(12):8443-52. PMID: 25674208; PMCID: PMC4314035.

Parasuraman S, Raveendran R, Kesavan R. Blood sample collection in small laboratory animals. J Pharmacol Pharmacother. 2010 Jul;1(2):87-93. doi: 10.4103/0976-500X.72350.

Stevens SS. On the theory of scales of measurement. Science. 1946;103:677–680.

Daniel WW, Cross CL. Biostatistics: a foundation for analysis in the health sciences. Wiley; 2018.

Tisoncik JR, Korth MJ, Simmons CP, Farrar J, Martin TR, Katze MG. Into the eye of the cytokine storm. Microbiol Mol Biol Rev. 2012 Mar;76(1):16-32. doi: 10.1128/MMBR.05015-11. PMID: 22390970; PMCID: PMC3294426.

Shao C, Lin S, Liu S, Jin P, Lu W, Li N, et al. HIF1a-induced glycolysis in macrophage is essential for the protective effect of ouabain during endotoxemia. Oxid Med Cell Longev. 2019;2019:7136585.

Kawai T, Akira S. The role of pattern-recognition receptors in innate immunity: update on toll-like receptors. Nat Immunol. 2010;11:373–84. Article CAS PubMed Google Scholar

Hajishengallis G, Darveau RP, Curtis MA. The keystone-pathogen hypothesis. Nat Rev Microbiol. 2012;10:717–25. Article CAS PubMed PubMed Central Google Scholar

Silva N, Abusleme L, Bravo D, Dutzan N, Garcia-Sesnich J, Vernal R, et al. Host response mechanisms in periodontal diseases. J Appl Oral Sci. 2015;23:329–55. Article CAS PubMed PubMed Central Google Scholar

Cekici A, Kantarci A, Hasturk H, Van Dyke TE. Inflammatory and immune pathways in the pathogenesis of periodontal disease. Periodontol. 2014;64:57–80. Article Google Scholar

Akira S, Uematsu S, Takeuchi O. Pathogen recognition and innate immunity. Cell. 2006;124(4):783–801. [Abstract] [Google Scholar]

Watanabe K, Iizuka T, Adeleke A, Pham L, Shlimon AE, Yasin M, et al. Involvement of toll-like receptor 4 in alveolar bone loss and glucose homeostasis in experimental periodontitis. J Periodontal Res. 2011;46:21–30. Article CAS PubMed Google Scholar

Wiese, A., Brandenburg, K., Ulmer, A. J., Seydel, U. and Müller-Loennies, S.. "The Dual Role of Lipopolysaccharide as Effector and Target Molecule" , vol. 380, no. 7-8, 1999, pp. 767-784.

Asti, C., Ruggieri, V., Porzio, S., Chiusaroli, R., Melillo, G., Caselli, G. F. (2000). Lipopolysaccharide-induced lung injury in mice. I. Concomitant evaluation of inflammatory cells and haemorrhagic lung damage. Pulm. Pharmacol. Ther. 13 (2), 61–69. doi: 10.1006/pupt.2000.0231PubMed Abstract | CrossRef Full Text | Google Scholar

Morgan MJ, Liu ZG. Crosstalk of reactive oxygen species and NF-kappaB signaling. Cell Res. 2011;21:103–15.

Hayder B. Sahib, Omer Abid Kathum, Rafal Shakeeb Alanee, Rehab A. M Jawad, Ahmed Majeed Al-Shammari, "The Anti-Cytokine Storm Activity of Quercetin Zinc and Vitamin C Complex", Advances in Virology, vol. 2022, Article ID 1575605, 6 pages, 2022.

Tucureanu MM, Rebleanu D, Constantinescu CA, Deleanu M, Voicu G, Butoi E, Calin M, Manduteanu I. Lipopolysaccharide-induced inflammation in monocytes/macrophages is blocked by liposomal delivery of Gi-protein inhibitor. Int J Nanomedicine. 2018;13:63-76

Linghu Ke-Gang, Wu Guo-Ping, Fu Ling-Yun, Yang Hong, Li Hai-Zhi, Chen Yan, Yu Hua, Tao Ling, Shen Xiang-Chun. 1,8-Cineole Ameliorates LPS-Induced Vascular Endothelium Dysfunction in Mice via PPAR-γ Dependent Regulation of NF-κB. Front. Pharmacol., 07 March 2019. Sec. Inflammation Pharmacology. Volume 10 - 2019 |

Lei Yang, Renyuan Zhou, Yu Tong, Pengfei Chen, Yu Shen, Shuai Miao, Xiaoqiang Liu, Neuroprotection by dihydrotestosterone in LPS-induced neuroinflammation, Neurobiology of Disease, Volume 140, 2020, 104814, ISSN 0969-9961,

Gao W, Tong D, Li Q, Huang P and Zhang F: Dexamethasone promotes regeneration of crushed inferior alveolar nerve by inhibiting NF-κB activation in adult rats. Arch Oral Biol. 80:101–109. 2017. View Article : Google Scholar : PubMed/NCBI

Lingtao Jin, Wenfeng Zeng, Fayun Zhang, Chunling Zhang, Wei Liang; Naringenin Ameliorates Acute Inflammation by Regulating Intracellular Cytokine Degradation. J Immunol 15 November 2017; 199 (10): 3466–3477.

Liu, Y., Wang, L., Du, N. et al. Ramelteon Ameliorates LPS-Induced Hyperpermeability of the Blood-Brain Barrier (BBB) by Activating Nrf2. Inflammation 44, 1750–1761 (2021).

Yang W, Zhang Y, Lu D, Huang T, Yan K, Wang W, Gao J. Ramelteon protects against human pulmonary microvascular endothelial cell injury induced by lipopolysaccharide (LPS) via activating nuclear factor erythroid 2-related factor 2 (Nrf2)/heme oxygenase-1 (HO-1) pathway. Bioengineered. 2022 Jan;13(1):1518-1529. doi: 10.1080/21655979.2021.2021065. PMID: 34986734; PMCID: PMC8805948.

Zhou W, Zhang X, Zhu CL, He ZY, Liang JP, Song ZC. Melatonin Receptor Agonists as the "Perioceutics" Agents for Periodontal Disease through Modulation of Porphyromonas gingivalis Virulence and Inflammatory Response. PLoS One. 2016 Nov 10;11(11):e0166442. doi: 10.1371/journal.pone.0166442. PMID: 27832188; PMCID: PMC5104381.

Tomás-Zapico C, Coto-Montes A. A proposed mechanism to explain the stimulatory effect of melatonin on antioxidative enzymes. J Pineal Res. 2005; 39(2):99–104. 10.1111/j.1600-079X.2005.00248.x [PubMed] [CrossRef] [Google Scholar] [Ref list]

Kandezi N, Majdi F, Davoudizadeh R, Motaghinejad M, Safari S. Preventive Properties of Ramelteon against Cocaine-Induced Autophagia and Apoptosis: A Hypothetic Role of TNF-α Receptor Involvement and JNK/Bcl-2-Beclin1 or Bcl-2/Bax Signaling Pathway. Int J Prev Med 2020;11:36.

Leguillette R, Tohver T, Bond SL, Nicol JA and McDonald KJ: Effect of dexamethasone and fluticasone on airway hyperresponsiveness in horses with inflammatory airway disease. J Vet Intern Med. 31:1193–1201. 2017. View Article : Google Scholar : PubMed/NCBI

H.-Y. Hsu and M.-H. Wen, “Lipopolysaccharide-mediated reactive oxygen species and signal transduction in the regulation of interleukin-1 gene expression,” Journal of Biological Chemistry, vol. 277, no. 25, pp. 22131–22139, 2002.

Bautista AP, Mészáros K, Bojta J, Spitzer JJ. Superoxide anion generation in the liver during the early stage of endotoxemia in rats. J. Leukoc. Biol. 1990; 48: 123– 8.

H. Jaeschke, “Reactive oxygen and mechanisms of inflammatory liver injury: present concepts,” Journal of Gastroenterology and Hepatology, vol. 26, pp. 173–179, 2011. View at: Publisher Site | Google Scholar

Hamesch K, Borkham-Kamphorst E, Strnad P, Weiskirchen R. Lipopolysaccharide-induced inflammatory liver injury in mice. Lab Anim. 2015 Apr;49(1 Suppl):37-46. doi: 10.1177/0023677215570087. PMID: 25835737.

Wang J, Jiang C, Zhang K, et al. Melatonin receptor activation provides cerebral protection after traumatic brain injury by mitigating oxidative stress and inflammation via the Nrf2 signaling pathway. Free Radic Biol Med. 2019;131:345–355. [PubMed] [Google Scholar]

Mathes AM, Kubulus D, Waibel L, et al. Selective activation of melatonin receptors with ramelteon improves liver function and hepatic perfusion after hemorrhagic shock in rat. Crit Care Med. 2008;36(10):2863–2870.[PubMed][Google Scholar] [Ref list]

Khodir A, Ghoneim H, Rahim M, Suddek G. Montelukast attenuates lipopolysaccharide-induced cardiac injury in rats. Human & Experimental Toxicology. 2016;35(4):388-397. doi:10.1177/0960327115591372

Stroethoff M, Goetze L, Torregroza C, et al. The melatonin receptor agonist ramelteon induces cardioprotection that requires MT2 receptor activation and release of reactive oxygen species. Cardiovasc Drugs Ther. 2020;34(3):303–310. [PMC free article] [PubMed] [Google Scholar] [Ref list]

Shimizu N, Nozawa M, Sugimoto K, Yamamoto Y, Minami T, Hayashi T, Yoshimura K, Ishii T, Uemura H. Therapeutic efficacy and anti-inflammatory effect of ramelteon in patients with insomnia associated with lower urinary tract symptoms. Res Rep Urol. 2013;5:113–9. CAS PubMed PubMed Central Google Scholar

Pan X, Zhu L, Lu H, Wang D, Lu Q, Yan H. Melatonin attenuates oxidative damage induced by acrylamide in vitro and in vivo. Oxidative Med Cell Longev. 2015;2015:703709. Return to ref 20 in article CAS Google Scholar

Stroethoff M, Goetze L, Torregroza C, Bunte S, Raupach A, Heinen A, Mathes A, Hollmann MW, Huhn R. The Melatonin Receptor Agonist Ramelteon Induces Cardioprotection that Requires MT2 Receptor Activation and Release of Reactive Oxygen Species. Cardiovasc Drugs Ther. 2020 Jun;34(3):303-310. doi: 10.1007/s10557-020-06972-4. PMID: 32236860; PMCID: PMC7242242.

Shah CA. Can roflumilast become steroid-sparing alternative in the treatment of COVID-19? Med Hypotheses. 2020 Nov;144:110246. doi: 10.1016/j.mehy.2020.110246. Epub 2020 Sep 3. PMID: 33254551; PMCID: PMC7470720.




How to Cite

A. Al-dabbagh , M. ., & B. Sahib, H. . (2023). The Protective Effect of Ramelteon and in combination with Dexamethasone on the Lipopolysaccharide-induced Cytokine Storm in mice. Journal of Contemporary Medical Sciences, 9(5).