Effect of Glycolipoprotein Biosurfactant from Enterococcus faecium on the viability of Breast cancer cell lines.

Authors

  • Dijlah A. Alimeer Department of Biology, College of Science, Mustansiriyah University, Baghdad, Iraq.
  • Nibras N. Mahmood Biotechnology Research Center, Al-Nahrain University, Baghdad, Iraq.
  • Mohammad M. F. Al-Halbosiy Biotechnology Research Center, Al-Nahrain University, Baghdad, Iraq

DOI:

https://doi.org/10.22317/jcms.v9i5.1432

Keywords:

Anticancer effect, Biosurfactant, Enterococcus faecium, FTIR.

Abstract

Objective : This study , was research for cytotoxicity of bio-surfactant created by Enterococcus faecium isolated from feces of Iraqi healthy breast-fed infants with  age < 6 months.

Methods :  Cold acetone precipitation was used to the extraction of extracellular Glycolipoprotein biosurfactant and partially purify it. Biosurfactant was then evaluated against two the cell lines, a Breast cancer MCF-7 cell line and a human normal fibroblast cell line NHF), specifically for cell survival and proliferation.  

Results :  At all concentrations  with varying percentage, The viability of the MCF-7 cancer cell line was shown to be reduced with the addition of biosurfactant.; maximum inhibition percentage was 74.2% at a 100 µg/ml concentration, which is lesser than 45.5% cytotoxicity Of NHF healthy fibroblasts cell line.

Conclusions : The findings of this study are highly encouraging in terms of the potential of Glycolipoprotein biosurfactants to treat cancer and encourage additional research with different cell lines.

References

Mishra, S., Lin, Z., Pang, S., Zhang, Y., Bhatt, P., & Chen, S. (2021). Biosurfactant is a powerful tool for the bioremediation of heavy metals from contaminated soils. Journal of Hazardous Materials, 418, 126253.‏

Johnson, P., Trybala, A., Starov, V., & Pinfield, V. J. (2021). Effect of synthetic surfactants on the environment and the potential for substitution by biosurfactants. Advances in colloid and interface science, 288, 102340.‏

Banat, I. M., Makkar, R. S., & Cameotra, S. S. (2000). Potential commercial applications of microbial surfactants. Applied microbiology and biotechnology, 53, 495-508.‏

Sakr, E. A., Ahmed, H. A. E., & Saif, F. A. A. (2021). Characterization of low-cost glycolipoprotein biosurfactant produced by Lactobacillus plantarum 60 FHE isolated from cheese samples using food wastes through response surface methodology and its potential as antimicrobial, antiviral, and anticancer activities. International Journal of Biological Macromolecules, 170, 94-106.‏

Gudiña, E. J., Rangarajan, V., Sen, R., & Rodrigues, L. R. (2013). Potential therapeutic applications of biosurfactants. Trends in pharmacological sciences, 34(12), 667-675.‏

Giri, S. S., Ryu, E. C., Sukumaran, V., & Park, S. C. (2019). Antioxidant, antibacterial, and anti-adhesive activities of biosurfactants isolated from Bacillus strains. Microbial pathogenesis, 132, 66-72.‏

Krawczyk, B., Wityk, P., Gałęcka, M., & Michalik, M. (2021). The many faces of Enterococcus spp.—commensal, probiotic and opportunistic pathogen. Microorganisms, 9(9), 1900.‏

Amendoeira, A., García, L. R., Fernandes, A. R., & Baptista, P. V. (2020). Light irradiation of gold nanoparticles toward advanced cancer therapeutics. Advanced therapeutics, 3(1), 1900153.‏

Jarallah, S. A., Al-Fartusie, F. S., & Zageer, D. S. (2023). Assessment of Insulin and Cortisol Levels in Iraqi Women with Breast Cancer. Al-Mustansiriyah Journal of Science, 34(1), 32-36.‏

Swan, A. 1954. The use of a bile-aesculin medium and of Maxted's technique of Lancefield grouping in the identification of enterococci (group D streptococci). Journal of clinical pathology, 7(2): 160–163.

Benson, T. 2001. Microbiological Applications Laboratory Manual in General Microbiology. 8th Edition, the McGraw-Hill, New York.

Morikawa, M., Hirata, Y., & Imanaka, T. (2000). A study on the structure–function relationship of lipopeptide biosurfactants. Biochimica et Biophysica Acta (BBA)-Molecular and Cell Biology of Lipids, 1488(3), 211-218.‏

Varjani, S. J., & Upasani, V. N. (2016). Core flood study for enhanced oil recovery through ex-situ bioaugmentation with thermo-and halo-tolerant rhamnolipid produced by Pseudomonas aeruginosa NCIM 5514. Bioresource technology, 220, 175-182.‏

Varjani, S. J., Rana, D. P., Bateja, S., Sharma, M. C., & Upasani, V. N. (2014). Screening and identification of biosurfactant (bioemulsifier) producing bacteria from crude oil contaminated sites of Gujarat, India. Int J Inno Res Sci Eng Technol, 3(2).‏

Choudhary, N. I. L. E. S. H., Pardhi, D. I. N. E. S. H., & Bhoyar, M. I. L. I. N. D. (2013). Isolation of soy lecithin from soy sludge, its standardization and behavioural study. Asian J. Pharm. Clin. Res, 6(2), 133-136.

DuBois, M., Gilles, K. A., Hamilton, J. K., Rebers, P. T., & Smith, F. (1956). Colorimetric method for determination of sugars and related substances. Analytical chemistry, 28(3), 350-356.‏

Bradford, M. M. (1976). A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Analytical biochemistry, 72(1-2), 248-254.‏

Anschau, A., Caruso, C. S., Kuhn, R. C., & Franco, T. T. (2017). Validation of the sulfo-phospho-vanillin (SPV) method for the determination of lipid content in oleaginous microorganisms. Brazilian Journal of Chemical Engineering, 34, 19-27.‏

Chaurasia, L. K., Tamang, B., Tirwa, R. K., & Lepcha, P. L. (2020). Influence of biosurfactant producing Bacillus tequilensis LK5. 4 isolate of kinema, a fermented soybean, on seed germination and growth of maize (Zea mays L.). 3 Biotech, 10, 1-12.

‏ [20] Ebakota, O. D., Osarueme, J. O., Gift, O. N., Odoligie, I., & Osazee, J. O. (2017). Isolation and characterization of hydrocarbon-degrading bacteria in top and subsoil of selected mechanic workshops in Benin City metropolis, Nigeria. Journal of Applied Sciences and Environmental Management, 21(4), 641-645.‏

Al-Shammari, A. M., Alshami, M. A., Umran, M. A., Almukhtar, A. A., Yaseen, N. Y., Raad, K., & Hussien, A. A. (2015). Establishment and characterization of a receptor-negative, hormone-nonresponsive breast cancer cell line from an Iraqi patient. Breast Cancer: Targets and Therapy, 7, 223.‏

Ibrahim, H. A., & Zaki, N. H. (2019). The Biological Activity of Protein Extracts of Bacillus spp. Isolated from Soil against Some Pathogenic Bacteria. Al-Mustansiriyah Journal of Science, 30(4).‏

Adil, B. H., Al-Shammari, A. M., & Murbat, H. H. (2020). Breast cancer treatment using cold atmospheric plasma generated by the FE-DBD scheme. Clinical Plasma Medicine, 19, 100103.‏

Hasan,Z.Y.M., Al-Halbosiy,M.M.F., Al-Lihaibi,R.K., Al-Nauimi, .H. (2022). Antimicrobial of lemongrass (Cymbopogon citratus L.) volatile oil and cytotoxic effects against L20B and MCF-7cell lines. Biodiversitas, 23(10), pp. 5298–5301.

Fathi, S. M., & Ali, I. A. (2023). Cytotoxic Effect of the Alcoholic Extract of Conocarpus erectus Leaves on MDA-MB 231 and MCF7 Breast Cancer Cell Lines. Iraqi Journal of Science, 84-90.‏

Abdullah, S. A., Al-Shammari, A. M., and Lateef, S. A. (2020). Attenuated measles vaccine strain have potent oncolytic activity against Iraqi patient derived breast cancer cell line. Saudi journal of biological sciences, 27(3), 865-872.‏

Hala M. Al-Saily, Mohammad Al-Halbosiy, Faris N. Al-Hady. (2019). Cytotoxic and apoptotic effects of cyproterone acetate against cancer cells and normal cells. Journal of Biotechnology Research Center, 13 (1),86-74.

Youssef, N. H., Duncan, K. E., Nagle, D. P., Savage, K. N., Knapp, R. M., & McInerney, M. J. (2004). Comparison of methods to detect biosurfactant production by diverse microorganisms. Journal of microbiological methods, 56(3), 339-347.‏

Ghazi Faisal, Z., Sallal Mahdi, M., & Alobaidi, K. H. (2023). Optimization and Chemical Characterization of Biosurfactant Produced from a Novel Pseudomonas guguanensis Strain Iraqi ZG. KM. International Journal of Microbiology, 2023.‏

Lamia, K. H. E. L. O. U. I. A., Kamel, E. D. D. O. U. A. O. U. D. A., Sonia, H. A. M. I. C. H. E., Sondes, M. E. C. H. R. I., & Billal, Z. E. N. A. T. I. PRODUCTION OF BIOSURFACTANT FROM A NOVEL ISOLATED STRAIN BACILLUS AMYLOLEQUIFACIENS K2E.‏

Kachrimanidou, V., Alimpoumpa, D., Papadaki, A., Lappa, I., Alexopoulos, K., & Kopsahelis, N. (2022). Cheese whey utilization for biosurfactant production: evaluation of bioprocessing strategies using novel Lactobacillus strains. Biomass Conversion and Biorefinery, 1-15.‏

Ghasemi, A., Moosavi-Nasab, M., Setoodeh, P., Mesbahi, G., & Yousefi, G. (2019). Biosurfactant production by lactic acid bacterium Pediococcus dextrinicus SHU1593 grown on different carbon sources: strain screening followed by product characterization. Scientific reports, 9(1), 1-12.

Bhosale, S. S., Rohiwal, S. S., Chaudhary, L. S., Pawar, K. D., Patil, P. S., and Tiwari, A. P. (2019). Photocatalytic decolorization of methyl violet dye using Rhamnolipid biosurfactant modified iron oxide nanoparticles for wastewater treatment. Journal of Materials Science: Materials in Electronics, 30, 4590-4598.‏

Chaurasia, L. K., Tirwa, R. K., & Tamang, B. (2022). Potential of Enterococcus faecium LM5. 2 for lipopeptide biosurfactant production and its effect on the growth of maize (Zea mays L.). Archives of Microbiology, 204(4), 223.‏

Lara, V. M., Mendonça, C. M., Silva, F. V., Marguet, E. R., Vallejo, M., Converti, A., ... & Oliveira, R. P. (2022). Characterization of Lactiplantibacillus plantarum Tw226 strain and its use for the production of a new membrane-bound biosurfactant. Journal of Molecular Liquids, 363, 119889.‏

Hippolyte, M. T., Augustin, M., Hervé, T. M., Robert, N., & Devappa, S. (2018). Application of response surface methodology to improve the production of antimicrobial biosurfactants by Lactobacillus paracasei subsp. tolerans N2 using sugar cane molasses as substrate. Bioresources and Bioprocessing, 5, 1-16.‏

Khademolhosseini, R., Jafari, A., Mousavi, S. M., Hajfarajollah, H., Noghabi, K. A., & Manteghian, M. (2019). Physicochemical characterization and optimization of glycolipid biosurfactant production by a native strain of Pseudomonas aeruginosa HAK01 and its performance evaluation for the MEOR process. RSC advances, 9(14), 7932-7947.‏

Kanakdande, A. P., & Khobragade, C. N. (2020). Exploration of Staphylococcus nepalensis (KY024500) biosurfactant towards microbial enhanced oil recovery. Journal of Surfactants and Detergents, 23(3), 527-537.‏

Satpute, S. K., Mone, N. S., Das, P., Banat, I. M., and Banpurkar, A. G. (2019). Inhibition of pathogenic bacterial biofilms on PDMS based implants by L. acidophilus derived biosurfactant. BMC microbiology, 19(1), 1-15.‏

Carolin, C. F., Kumar, P. S., Joshiba, G. J., Madhesh, P., & Ramamurthy, R. (2021). Sustainable strategy for the enhancement of hazardous aromatic amine degradation using lipopeptide biosurfactant isolated from Brevibacterium casei. Journal of Hazardous Materials, 408, 124943.‏

Sen, S., Borah, S. N., Kandimalla, R., Bora, A., & Deka, S. (2020). Sophorolipid biosurfactant can control cutaneous dermatophytosis caused by Trichophyton mentagrophytes. Frontiers in microbiology, 11, 329.‏

Salman, J. A. S., Al Marjani, M. F., & Ghani, Z. S. A. (2016). Inhibition of cancer cells line by biosurfactant produced from leuconostocmesenteroidesssp cremoris. Acta Medica International, 3(2), 121.‏

Balleza, D., Alessandrini, A., & Beltrán García, M. J. (2019). Role of lipid composition, physicochemical interactions, and membrane mechanics in the molecular actions of microbial cyclic lipopeptides. The Journal of membrane biology, 252(2-3), 131-157.‏

Christova, N., Tuleva, B., Kril, A., Georgieva, M., Konstantinov, S., Terziyski, I., ... & Stoineva, I. (2013). Chemical structure and in vitro antitumor activity of rhamnolipids from Pseudomonas aeruginosa BN10. Applied biochemistry and biotechnology, 170, 676-689.‏

Rahimi, K., Lotfabad, T. B., Jabeen, F., & Ganji, S. M. (2019). Cytotoxic effects of mono-and di-rhamnolipids from Pseudomonas aeruginosa MR01 on MCF-7 human breast cancer cells. Colloids and Surfaces B: Biointerfaces, 181, 943-952.‏

Thakur, P., Saini, N. K., Thakur, V. K., Gupta, V. K., Saini, R. V., & Saini, A. K. (2021). Rhamnolipid the Glycolipid Biosurfactant: Emerging trends and promising strategies in the field of biotechnology and biomedicine. Microbial Cell Factories, 20, 1-15.‏

Christova, N., Lang, S., Wray, V., Kaloyanov, K., Konstantinov, S., and Stoineva, I. (2015). Production, structural elucidation, and in vitro antitumor activity of trehalose lipid biosurfactant from Nocardia farcinica strain. Journal of Microbiology and Biotechnology, 25(4), 439-447.‏

Waghmode, S., Swami, S., Sarkar, D., Suryavanshi, M., Roachlani, S., Choudhari, P., & Satpute, S. (2020). Exploring the pharmacological potentials of biosurfactant derived from Planococcus maritimus SAMP MCC 3013. Current Microbiology, 77, 452-459.‏

Zhao, H., Yan, L., Xu, X., Jiang, C., Shi, J., Zhang, Y., ... & Huang, Q. (2018). Potential of Bacillus subtilis lipopeptides in anti-cancer I: induction of apoptosis and paraptosis and inhibition of autophagy in K562 cells. Amb Express, 8, 1-16.‏

Wang, C. L., Liu, C., Niu, L. L., Wang, L. R., Hou, L. H., & Cao, X. H. (2013). Surfactin-induced apoptosis through ROS–ERS–Ca 2+-ERK pathways in HepG2 cells. Cell biochemistry and biophysics, 67, 1433-1439.‏

Downloads

Published

2023-10-29

How to Cite

A. Alimeer, D. ., N. Mahmood, N. ., & M. F. Al-Halbosiy, M. . (2023). Effect of Glycolipoprotein Biosurfactant from Enterococcus faecium on the viability of Breast cancer cell lines. Journal of Contemporary Medical Sciences, 9(5). https://doi.org/10.22317/jcms.v9i5.1432