Efficacy of Talh Honey, Whey Protein, and Collagen Based Novel Formulation Against Wound-Associated Skin Microbiota


  • H. A Yamani Department of Biology, College of Science, University of Jeddah, Jeddah, Saudi Arabia; Biology Department, Faculty of science, Princess Nourah Bint Abdul Rahman University, Riyadh, Saudi Arabia
  • M. M Al-Zahrani Department of Biology, College of Science, University of Jeddah, Jeddah, Saudi Arabia




Wound healing, excisional wound, honey, whey protein, skin microbiota, collagen.


Objective: This study aims to evaluate the efficacy of a novel wound-healing formulation composed of honey, whey protein, and collagen
against the skin microbiota associated with delayed wound healing.

Methods: A rat excisional model was employed to assess the wound-healing formulation. Pathogen contraction rates were measured on
various days following the onset of wounds to investigate the formulation’s impact on microbial infection. The formulation, known for its
antimicrobial properties and rich in growth factors, was applied to promote cell proliferation, differentiation, and tissue repair.

Results: The tested wound-healing formulation demonstrated significant effectiveness in promoting the wound-healing process in rats.
The pathogen contraction rates exhibited positive outcomes, indicating the formulation’s potential in addressing microbial infections
associated with delayed wound healing.

Conclusion: This study underscores the promising therapeutic potential of the wound-healing formulation comprising honey, whey
protein, and collagen. The observed positive effects on microbial infection and wound recovery suggest that this formulation could serve
as a valuable intervention in managing delayed wound healing, particularly in conditions such as diabetes, immunosuppressive treatments, and obesity.


Azcárate-Peril, M. A. and R. R. Raya, 2001. Methods for plasmid and genomic DNA isolation from Lactobacilli. Food microbiology protocols, Springer: 135-139.

Badr, G., 2013. Camel whey protein enhances diabetic wound healing in a streptozotocin-induced diabetic mouse model: the critical role of β-Defensin-1,-2 and-3. Lipids in health and disease. 12 (1) 46.

Badr, G., B. M. Badr, M. H. Mahmoud, et al., 2012. Treatment of diabetic mice with undenatured whey protein accelerates the wound healing process by enhancing the expression of MIP-1α, MIP-2, KC, CX3CL1 and TGF-β in wounded tissue. BMC immunology. 13 (1) 1-9.

Baek, S. D., C. Chun and K. S. Hong, 2019. Hemolytic uremic syndrome caused by Escherichia fergusonii infection. Kidney research and clinical practice. 38 (2) 253-255.

Bakkiyaraj, D., R. Sritharadol, A. R. Padmavathi, et al., 2017. Anti-biofilm properties of a mupirocin spray formulation against Escherichia coli wound infections. Biofouling. 33 (7) 591-600.

Bariar, L., S. Vasenwala, A. Malik, et al., 1997. A clinicopathological study of infections in burn patients and importance of biopsy. Journal of the Indian Medical Association. 95 (11) 573-575.

Becker, K., C. Heilmann and G. Peters, 2014. Coagulase-Negative Staphylococci. Clinical Microbiology Reviews. 27 (4) 870-926. https://doi.org/10.1128/cmr.00109-13

Böcher, S., B. Tønning, R. L. Skov, et al., 2009. Staphylococcus lugdunensis, a common cause of skin and soft tissue infections in the community. Journal of clinical microbiology. 47 (4) 946-950.

Bochniarz, M., B. Dzięgiel, A. Nowaczek, et al., 2016. Factors responsible for subclinical mastitis in cows caused by Staphylococcus chromogenes and its susceptibility to antibiotics based on bap, fnbA, eno, mecA, tetK, and ermA genes. Journal of dairy science. 99 (12) 9514-9520.

Bounous G., G. P., 1991. The biological activity of undenatured dietary whey proteins: role of glutathione. Clin. Invest. Med.

Bowler, P. G. and B. J. Davies, 1999. The microbiology of infected and noninfected leg ulcers. International journal of dermatology. 38 (8) 573-578.

Sarheed, O., Ahmed, A., Shouqair, D., & Boateng, J. (2016). Antimicrobial dressings for improving wound healing. Wound healing-new insights into ancient challenges, 373–98.

Willers, C., Jansen van Rensburg, P. J., & Claassens, S. (2015). Phospholipid fatty acid profiling of microbial communities–a review of interpretations and recent applications. Journal of applied microbiology, 119(5), 1207–1218.

Brown, D. F., D. I. Edwards, P. M. Hawkey, et al., 2005. Guidelines for the laboratory diagnosis and susceptibility testing of methicillin-resistant Staphylococcus aureus (MRSA). Journal of Antimicrobial chemotherapy. 56 (6) 1000-1018.

Cheesbrough, M., 2000. Haematological tests. District laboratory practice in tropical countries part. 2 267-380.

Kwakman, P. H., & Zaat, S. A. (2012). Antibacterial components of honey. IUBMB life, 64(1), 48–55.

Dakić, I., D. Morrison, D. Vuković, et al., 2005. Isolation and molecular characterization of Staphylococcus sciuri in the hospital environment. Journal of clinical microbiology. 43 (6) 2782-2785.

Davies, C. E., K. E. Hill, M. J. Wilson, et al., 2004. Use of 16S ribosomal DNA PCR and denaturing gradient gel electrophoresis for analysis of the microfloras of healing and nonhealing chronic venous leg ulcers. Journal of clinical microbiology. 42 (8) 3549-3557.

Davin-Regli, A. and J.-M. Pagès, 2015. Enterobacter aerogenes and Enterobacter cloacae; versatile bacterial pathogens confronting antibiotic treatment. Frontiers in Microbiology. 6 (392) https://doi.org/10.3389/fmicb.2015.00392

Dowd, S. E., Y. Sun, P. R. Secor, et al., 2008. Survey of bacterial diversity in chronic wounds using pyrosequencing, DGGE, and full ribosome shotgun sequencing. BMC microbiology. 8 (1) 43.

Ebaid, H., A. Salem, A. Sayed, et al., 2011. Whey protein enhances normal inflammatory responses during cutaneous wound healing in diabetic rats. Lipids in health and disease. 10 (1) 1-10.

Ehlers, S. and S. A. Merrill, 2020. Staphylococcus saprophyticus. StatPearls. Treasure Island (FL).

Esmail, M. A. M., H. M. Abdulghany and R. M. Khairy, 2019. Prevalence of Multidrug-Resistant Enterococcus faecalis in Hospital-Acquired Surgical Wound Infections and Bacteremia: Concomitant Analysis of Antimicrobial Resistance Genes. Infectious Diseases: Research and Treatment. 12 1178633719882929. https://doi.org/10.1177/1178633719882929

Evans, C. A., 1975. Persistent individual differences in the bacterial flora of the skin of the forehead: numbers of propionibacteria. Journal of Investigative Dermatology. 64 (1) 42-46.

Fierer, N., M. Hamady, C. L. Lauber, et al., 2008. The influence of sex, handedness, and washing on the diversity of hand surface bacteria. Proceedings of the National Academy of Sciences. 105 (46) 17994-17999.

Gaastra, W., J. G. Kusters, E. van Duijkeren, et al., 2014. Escherichia fergusonii. Vet Microbiol. 172 (1-2) 7-12. https://doi.org/10.1016/j.vetmic.2014.04.016

Gamal Badr1, Badr M Badr6, Mohamed H Mahmoud1,5, Mohamed Mohany4, Danny M Rabah1,7 and and Olivier Garraud3, 2012. Treatment of diabetic mice with undenatured whey protein accelerates the wound healing process by enhancing the expression of MIP-1α,MIP-2, KC, CX3CL1 and TGF-β in wounded tissue. Badr et al. BMC Immunology.

Gao, Z., C.-h. Tseng, Z. Pei, et al., 2007. Molecular analysis of human forearm superficial skin bacterial biota. Proceedings of the National Academy of Sciences. 104 (8) 2927-2932.

Giacometti, A., O. Cirioni, A. Schimizzi, et al., 2000. Epidemiology and microbiology of surgical wound infections. Journal of clinical microbiology. 38 (2) 918-922.

Gill, H. S. and M. L. Cross, 2000. Anticancer properties of bovine milk. The British journal of nutrition. 84 Suppl 1 S161-166.

Gjødsbøl, K., J. J. Christensen, T. Karlsmark, et al., 2006. Multiple bacterial species reside in chronic wounds: a longitudinal study. International wound journal. 3 (3) 225-231.

Grego, E., P. M. Robino, C. Tramuta, et al., 2016. Evaluation of antimicrobial activity of Italian honey for wound healing application in veterinary medicine. Schweizer Archiv Fur Tierheilkunde. 158 (7) 521-527.

Grice, E. A. and J. A. Segre, 2011. The skin microbiome. Nature reviews microbiology. 9 (4) 244-253.

Grigore, M. E., A. M. Grumezescu, A. M. Holban, et al., 2017. Collagen-nanoparticles composites for wound healing and infection control. Metals. 7 (12) 516.

Han, G. and R. Ceilley, 2017. Chronic Wound Healing: A Review of Current Management and Treatments. Adv Ther. 34 (3) 599-610. https://doi.org/10.1007/s12325-017-0478-y

Hardy, K., P. Hawkey, F. Gao, et al., 2004. Methicillin resistant Staphylococcus aureus in the critically ill. British journal of anaesthesia. 92 (1) 121-130.

Heldt Manica, L. A. and P. R. Cohen, 2017. Staphylococcus lugdunensis Infections of the Skin and Soft Tissue: A Case Series and Review. Dermatol Ther (Heidelb). 7 (4) 555-562. https://doi.org/10.1007/s13555-017-0202-5

Ho, P. L., S. M. Leung, H. Tse, et al., 2014. Novel selective medium for isolation of Staphylococcus lugdunensis from wound specimens. J Clin Microbiol. 52 (7) 2633-2636. https://doi.org/10.1128/JCM.00706-14

Khalili, H., R. Soltani, K. Gholami, et al., 2010. Antimicrobial susceptibility pattern of Staphylococcus aureus strains isolated from hospitalized patients in Tehran, Iran. Iranian Journal of Pharmaceutical Sciences. 6 (2) 125-132.

Körber, A., E. Schmid, J. Buer, et al., 2010. Bacterial colonization of chronic leg ulcers: current results compared with data 5 years ago in a specialized dermatology department. Journal of the European Academy of Dermatology and Venereology. 24 (9) 1017-1025.

Lindley, L. E., O. Stojadinovic, I. Pastar, et al., 2016. Biology and Biomarkers for Wound Healing. Plastic and Reconstructive Surgery. 138 (3S) 18S-28S. https://doi.org/10.1097/prs.0000000000002682

McBRIDE, M. E., W. C. DUNCAN and J. M. KNOX, 1977. Cutaneous microflora of patients with repeated skin infections. Journal of cutaneous pathology. 4 (1) 14-22.

Negut, I., Grumezescu, V., & Grumezescu, A. (2018). Treatment Strategies for Infected Wounds. Molecules, 23(9), 2392.

OGUNC A.V., M. M., Cingi A., Aktan O., and Yalcin A.S, 2004. The effect of dietary whey supplementation on wound healing. Med. J. Kocatepe.

Oryan, A., Alemzadeh, E., & Moshiri, A. (2016). Biological properties and therapeutic activities of honey in wound healing: A narrative review and meta-analysis. J Tissue Viability, 25(2), 98-118. doi:10.1016/j.jtv.2015.12.002

Peng-Hui Wang, B.-S. H., Huann-Cheng Horng, Chang-Ching Yeh, Yi-Jen Chen, 2018. wound healing. Journal of the Chinese Medical Association. Volume 81 (Issue 2) Pages 94-101. https://doi.org/https://doi.org/10.1016/j.jcma.2017.11.002.

Pérez, A., M. Poza, A. Fernández, et al., 2012. Involvement of the AcrAB-TolC Efflux Pump in the Resistance, Fitness, and Virulence of Enterobacter cloacae. Antimicrobial Agents and Chemotherapy. 56 (4) 2084-2090. https://doi.org/10.1128/aac.05509-11.

Peterson, J., S. Garges, M. Giovanni, et al., 2009. The NIH human microbiome project. Genome research. 19 (12) 2317-2323.

Petkovšek, Ž., K. Eleršič, M. Gubina, et al., 2009. Virulence potential of Escherichia coli isolates from skin and soft tissue infections. Journal of clinical microbiology. 47 (6) 1811-1817.

Rivera, M., Dominguez, M. D., Mendiola, N. R., Roso, G. R., & Quereda, C. (2014). Staphylococcus lentus peritonitis: a case report. Peritoneal Dialysis International, 34(4), 469–470.

Revathi, G., J. Puri and B. Jain, 1998. Bacteriology of burns. Burns. 24 (4) 347-349.

Rivera, M., M. D. Dominguez, N. R. Mendiola, et al., 2014. Staphylococcus lentus peritonitis: a case report. Peritoneal Dialysis International. 34 (4) 469-470.

Rosenthal, M., D. Goldberg, A. Aiello, et al., 2011. Skin microbiota: microbial community structure and its potential association with health and disease. Infection, Genetics and Evolution. 11 (5) 839-848.

Sagliyan A., A. O. C., C. Gunay, M.C. Han1, F. Benzer, M.F. Kandemir, 2010. Effects of dietary supplementation with whey proteins on surgical wound healing in rats. Revue Méd. Vét.

Savini, V., C. Catavitello, M. Talia, et al., 2008. Multidrug-resistant Escherichia fergusonii: a case of acute cystitis. Journal of clinical microbiology. 46 (4) 1551-1552.

Seni, J., S. E. Mshana, F. Msigwa, et al., 2016. Draft Genome Sequence of a Multiresistant Bovine Isolate of Staphylococcus lentus from Tanzania. Genome Announcements. 4 (6) e01345-01316. https://doi.org/10.1128/genomeA.01345-16

Serra, R., Grande, R., Butrico, L., Rossi, A., Settimio, U. F., Caroleo, B., de Franciscis, S. (2015). Chronic wound infections: the role of Pseudomonas aeruginosa and Staphylococcus aureus. Expert review of anti-infective therapy, 13(5), 605-613.

Silva, K. C. S., L. O. S. Silva, G. A. A. Silva, et al., 2020. Staphylococcus saprophyticus Proteomic Analyses Elucidate Differences in the Protein Repertories among Clinical Strains Related to Virulence and Persistence. Pathogens. 9 (1) https://doi.org/10.3390/pathogens9010069

Trandafir, V., G. Popescu, M. Albu, et al., 2007. Bioproducts based on collagen. Publishing Ars Docendi: Bucharest.

Urbancic‐Rovan, V. and M. Gubina, 2000. Bacteria in superficial diabetic foot ulcers. Diabetic Medicine. 17 (11) 814-815.

Vindenes, H. and R. Bjerknes, 1995. Microbial colonization of large wounds. Burns. 21 (8) 575-579.

Wilson, J. R., J. G. Mills, I. D. Prather, et al., 2005. A toxicity index of skin and wound cleansers used on in vitro fibroblasts and keratinocytes. Advances in skin & wound care. 18 (7) 373-378.

Wright, P. and C. Terry, 1981. Antagonism within populations of micro-organisms from normal human skin. Journal of medical microbiology. 14 (3) 271-278.




How to Cite

Yamani, H. A., & Al-Zahrani, M. M. (2023). Efficacy of Talh Honey, Whey Protein, and Collagen Based Novel Formulation Against Wound-Associated Skin Microbiota. Journal of Contemporary Medical Sciences, 9(6). https://doi.org/10.22317/jcms.v9i6.1454