Vildagliptin Nephroprotective Effect in Rats Model with Cisplatin-Induced Nephrotoxicity


  • Abeer T. Watife Department of Pharmacology and Toxicology, Faculty of Pharmacy, University of Kufa, Najaf, Iraq.
  • Ahsan F. Bairam Department of Pharmacology and Toxicology, Faculty of Pharmacy, University of Kufa, Najaf, Iraq.
  • Nibras H. Al-Ghuraibawi Department of Pharmacology and Toxicology, Faculty of Pharmacy, University of Kufa, Najaf, Iraq.



Nephrotoxicity, vildagliptin, cisplatin, TNF-α, caspase-3, TAOC.


Objective: To evaluate the nephroprotective effect of vildagliptin against cisplatin-induced nephrotoxicity in rats.

Methods and Materials: Twenty-eight male rats have been divided into four groups: Control (received distal water), cisplatin treated group (received single dose of cisplatin (7mg/kg) intraperitoneally (IP) on day eight), vildagliptin plus cisplatin treated group (received vildagliptin 10mg/kg/day orally for 14 days, seven days before and seven days after the dose of cisplatin on day eight), and vildagliptin treated group (received the same dose and duration of vildagliptin mentioned previously). At the end, blood samples were collected to evaluate tumor necrotic factor-α (TNF-α), caspase-3, total antioxidant capacity (TAOC), urea, and creatinine. The serum levels of these biomarkers were expressed as mean ± standard error of mean. Additionally, kidneys were fixed in formalin for histopathological examination.

Result: Vildagliptin treatment significantly reduced the serum levels of TNF-α, caspase-3, urea, and creatinine as well as increased the TAOC level in rats treated with vildagliptin plus cisplatin when compared with cisplatin treated group. Histopathological examination further supported the nephroprotective effect of vildagliptin in rats with cisplatin induced nephrotoxicity. 

Conclusion: Vildagliptin improved kidney function and reduced cisplatin nephrotoxicity which may highlight the nephroprotective effect of this DPP-4 inhibitor against cisplatin-induced nephrotoxicity.


Mody H, Ramakrishnan V, Chaar M, Lezeau J, Rump A, Taha K, Lesko L, Ait-Oudhia S. A Review on Drug-Induced Nephrotoxicity: Pathophysiological Mechanisms, Drug Classes, Clinical Management, and Recent Advances in Mathematical Modeling and Simulation Approaches. Clin Pharmacol Drug Dev. 2020 Nov;9(8):896-909. doi: 10.1002/cpdd.879. Epub 2020 Oct 6. PMID: 33025766.

Uchino S, Kellum JA, Bellomo R, Doig GS, Morimatsu H, Morgera S, Schetz M, Tan I, Bouman C, Macedo E, Gibney N, Tolwani A, Ronco C; Beginning and Ending Supportive Therapy for the Kidney (BEST Kidney) Investigators. Acute renal failure in critically ill patients: a multinational, multicenter study. JAMA. 2005 Aug 17;294(7):813-8. doi: 10.1001/jama.294.7.813. PMID: 16106006.3. Ronco, C., Bellomo, R., & Kellum, J. A. (2019). Acute kidney injury. The Lancet, 394(10212), 1949-1964.

Khwaja A. KDIGO clinical practice guidelines for acute kidney injury. Nephron Clin Pract. 2012;120(4):c179-84. doi: 10.1159/000339789. Epub 2012 Aug 7. PMID: 22890468.

Ilson, D. H. (2008). Esophageal cancer chemotherapy: recent advances. Gastrointestinal cancer research: GCR, 2(2), 85.‏

Gronwald, J., Byrski, T., Lubinski, J., & Narod, S. A. (2012, December). Cisplatin in breast cancer treatment in BRCA1 carriers. In Hereditary Cancer in Clinical Practice (Vol. 10, No. 4, pp. 1-1). BioMed Central.‏

Moxley, K. M., & McMeekin, D. S. (2010). Endometrial carcinoma: a review of chemotherapy, drug resistance, and the search for new agents. The oncologist, 15(10), 1026-1033.‏

Dos Santos, N. A. G., Carvalho Rodrigues, M. A., Martins, N. M., & Dos Santos, A. C. (2012). Cisplatin-induced nephrotoxicity and targets of nephroprotection: an update. Archives of toxicology, 86(8), 1233-1250.‏

Ciccarelli, R. B., Solomon, M. J., Varshavsky, A., & Lippard, S. J. (1985). In vivo effects of cis-and trans-diamminedichloroplatinum (II) on SV40 chromosomes: differential repair, DNA-protein crosslinking, and inhibition of replication. Biochemistry, 24(26), 7533-7540.‏

Zhang, B., Ramesh, G., Norbury, C. C., & Reeves, W. B. (2007). Cisplatin-induced nephrotoxicity is mediated by tumor necrosis factor-α produced by renal parenchymal cells. Kidney international, 72(1), 37-44.‏

Pabla, N., & Dong, Z. (2008). Cisplatin nephrotoxicity: mechanisms and renoprotective strategies. Kidney international, 73(9), 994-1007.‏

Jesse, C. R., Bortolatto, C. F., Wilhelm, E. A., Roman, S. S., Prigol, M., & Nogueira, C. W. (2014). The peroxisome proliferator‐activated receptor‐γ agonist pioglitazone protects against cisplatin‐induced renal damage in mice. Journal of Applied Toxicology, 34(1), 25-32.‏

Hasan, A. A., & Hocher, B. (2017). Role of soluble and membrane-bound dipeptidyl peptidase-4 in diabetic nephropathy. J Mol Endocrinol, 59(1), R1-R10.

Suddek GM, El-Kenawi AE, Abdel-Aziz A, El-Kashef HA. Celecoxib, a selective cyclooxygenase-2 inhibitor, attenuates renal injury in a rat model of Cisplatin-induced nephrotoxicity. Chemotherapy. 2011;57(4):321-6. doi: 10.1159/000329529. Epub 2011 Sep 1. PMID: 21893983.

Mostafa RE, Morsi AH, Asaad GF. Anti-inflammatory effects of saxagliptin and vildagliptin against doxorubicin-induced nephrotoxicity in rats: attenuation of NLRP3 inflammasome up-regulation and tubulo-interstitial injury. Res Pharm Sci. 2021 Aug 19;16(5):547-558. doi: 10.4103/1735-5362.323920. PMID: 34522201; PMCID: PMC8407158.

Miller RP, Tadagavadi RK, Ramesh G, Reeves WB. Mechanisms of Cisplatin nephrotoxicity. Toxins (Basel). 2010 Nov;2(11):2490-518. doi: 10.3390/toxins2112490. Epub 2010 Oct 26. PMID: 22069563; PMCID: PMC3153174.

Alhoshani AR, Hafez MM, Husain S, Al-Sheikh AM, Alotaibi MR, Al Rejaie SS, Alshammari MA, Almutairi MM, Al-Shabanah OA. Protective effect of rutin supplementation against cisplatin-induced Nephrotoxicity in rats. BMC Nephrol. 2017 Jun 15;18(1):194. doi: 10.1186/s12882-017-0601-y. PMID: 28619064; PMCID: PMC5472980.

Duffy EA, Fitzgerald W, Boyle K, Rohatgi R. Nephrotoxicity: Evidence in Patients Receiving Cisplatin Therapy. Clin J Oncol Nurs. 2018 Apr 1;22(2):175-183. doi: 10.1188/18.CJON.175-183. PMID: 29547601.

Fadini GP, Avogaro A. Cardiovascular effects of DPP-4 inhibition: beyond GLP-1. Vascul Pharmacol. 2011 Jul-Sep;55(1-3):10-6. doi: 10.1016/j.vph.2011.05.001. Epub 2011 May 31. PMID: 21664294.

Attia, M.E., A Elberry, A., Ahmed, M. and El Zanaty, D.M., 2022. Effect of Saxagliptin on Cisplatin-Induced Nephrotoxicity in Rats. Egyptian Journal of Medical Research, 3(1), pp.241-261.

Kumar P, Sulakhiya K, Barua CC, Mundhe N. TNF-α, IL-6 and IL-10 expressions, responsible for disparity in action of curcumin against cisplatin-induced nephrotoxicity in rats. Mol Cell Biochem. 2017 Jul;431(1-2):113-122. doi: 10.1007/s11010-017-2981-5. Epub 2017 Mar 3. PMID: 28258441.

Singh, A. K., Yadav, D., Sharma, N., & Jin, J. O. (2021). Dipeptidyl Peptidase (DPP)-IV inhibitors with antioxidant potential isolated from natural sources: A novel approach for the management of diabetes. Pharmaceuticals, 14(6), 586.‏

Nagai, Y., Matoba, K., Kawanami, D., Takeda, Y., Akamine, T., Ishizawa, S., ... & Nishimura, R. (2019). ROCK2 regulates TGF-β-induced expression of CTGF and profibrotic genes via NF-κB and cytoskeleton dynamics in mesangial cells. American Journal of Physiology-Renal Physiology. 317 (4), pp. F839–F851.

Matoba, K., Takeda, Y., Nagai, Y., Kawanami, D., Utsunomiya, K., & Nishimura, R. (2019). Unraveling the role of inflammation in the pathogenesis of diabetic kidney disease. International journal of molecular sciences, 20(14), 3393

Feng, Q., Liu, D., Lu, Y., & Liu, Z. (2020). The interplay of renin-angiotensin system and toll-like receptor 4 in the inflammation of diabetic nephropathy. Journal of Immunology Research, 2020. 2020, pp. 01–11.

Mostafa HE, Alaa El-Din EA, El-Shafei DA, Abouhashem NS, Abouhashem AA. Protective roles of thymoquinone and vildagliptin in manganeseinduced nephrotoxicity in adult albino rats. Environ Sci Pollut Res Int. 2021. 28, pp. 31174–31184.

Choi, S. H., Leem, J., & Lee, I. K. (2017). Protective effects of gemigliptin, a dipeptidyl peptidase-4 inhibitor, against cisplatin-induced nephrotoxicity in mice. Mediators of Inflammation, 2017. 2017, pp. 01–09.

Park, M. S., De Leon, M., & Devarajan, P. (2002). Cisplatin induces apoptosis in LLC-PK1 cells via activation of mitochondrial pathways. Journal of the American Society of Nephrology, 13(4), 858-865.

Kaushal, G. P., Kaushal, V., Hong, X., & Shah, S. V. (2001). Role and regulation of activation of caspases in cisplatin-induced injury to renal tubular epithelial cells. Kidney international, 60(5), 1726-1736.

Al-Thamir, S.N.K., Al-Shalah, H.H. and Bairam, A.F.H., 2012. Protection from the Acute Cisplatin-Induced Nephrotoxicity by Simvastatin in Rats. Medical Journal of Babylon, 9(1), pp.51-59.

Yin, W., Jiang, Y., Xu, S., Wang, Z., Peng, L., Fang, Q., ... & Lou, J. (2019). Protein kinase C and protein kinase A are involved in the protection of recombinant human glucagon‐like peptide‐1 on glomeruli and tubules in diabetic rats. Journal of diabetes investigation, 10(3), 613-625.‏

Helal, M. G., Zaki, M. M. A. F., & Said, E. (2018). Nephroprotective effect of saxagliptin against gentamicin-induced nephrotoxicity, emphasis on anti-oxidant, anti-inflammatory and anti-apoptic effects. Life sciences, 208, 64-71.‏

Helmy MM, Mouneir SM. Reno-protective effect of linagliptin against gentamycin nephrotoxicity in rats. Pharmacol Rep. 2019 Dec;71(6):1133-1139. doi: 10.1016/j.pharep.2019.06.017. Epub 2019 Jul 2. PMID: 31675669.

Ozkok A, Edelstein CL. Pathophysiology of cisplatin-induced acute kidney injury. Biomed Res Int. 2014;2014:967826. doi: 10.1155/2014/967826. Epub 2014 Aug 6. PMID: 25165721; PMCID: PMC4140112.




How to Cite

Watife, A. T. ., Bairam, A. F. ., & Al-Ghuraibawi, N. H. . (2024). Vildagliptin Nephroprotective Effect in Rats Model with Cisplatin-Induced Nephrotoxicity. Journal of Contemporary Medical Sciences, 10(1).