Unveiling the Mediating Role of the REJ Region: PC1 and Extracellular Matrix Dynamics in ADPKD

Authors

  • Aljazi Abdullah Alrashidi Department of Chemistry, Faculty of Sciences, University of Hail, Hail 2440, Saudi Arabia
  • Hala Salim Sonbol Department of Biochemistry, Faculty of Sciences, King Abdulaziz University, Jeddah 80200, Saudi Arabia

DOI:

https://doi.org/10.22317/jcms.v10i1.1508

Keywords:

Polycystin-1, Receptor of the egg jelly (REJ) domain, Pull-down technique, MALDI-TOF MS, Extracellular matrix (ECM).

Abstract

Objective: This study aimed to investigate the interactions of PC1 with extracellular matrix proteins (ECM) to gain insights into its role in ADPKD onset. This exploration objective is to unravel the significance of these interactions in both the healthy development of kidneys and the underlying mechanisms of ADPKD, potentially identifying therapeutic targets.

Methods: We cloned and expressed the receptor of the egg jelly (REJ) domain as a maltose-binding protein-fusion protein (PET21-MBP(TEV)-REJ). Subsequently, we utilized this construct in a pulldown assay involving HEK 293 cells. In vitro, pull-down assays were conducted to evaluate the binding of the REJ fusion to various ECM components.

Results: The REJ fusion protein effectively binds to vitronectin, Fibulin-1, and actin filament-associated protein (AFAP) 1. These findings indicate that the REJ region acts as a mediator for the interaction between polycystin-1 and the ECM, shedding light on the functional role of polycystin-1 in both cell-matrix and cell-cell interactions.

Conclusion: The detailed characterization of REJ-ECM interactions offers a valuable foundation for future research aimed at systematically studying the effects of disease-causing mutations within the REJ module of human PC-1.

References

- ‏ Lea WA, Winklhofer T, Zelenchuk L, Sharma M, Rossol-Allison J, Fields TA, Reif G, Calvet JP, Bakeberg JL, Wallace DP, Ward CJ. Polycystin-1 Interacting Protein-1 (CU062) Interacts with the Ectodomain of Polycystin-1 (PC1). Cells. 2023 Aug 29;12(17):2166. doi: 10.3390/cells12172166. PMID: 37681898; PMCID: PMC10487028.

- Douguet, D., Patel, A. & Honoré, E. Structure and function of polycystins: insights into polycystic kidney disease. Nat Rev Nephrol 15, 412–422 (2019). https://doi.org/10.1038/s41581-019-0143-6

- Orhi Esarte Palomero, Megan Larmore, and Paul G.De Caen. Annual Review of Physiology Polycystin Channel Complexes. .2023.85:425–48. https://doi.org/10.1146/annurev-physiol-031522084334 doi:https://doi.org/10.1371/journal.pone.0289778

- Maser RL, Calvet JP, Parnell SC. The GPCR properties of polycystin-1- A new paradigm. Front Mol Biosci. 2022 Nov 4;9:1035507. doi: 10.3389/fmolb.2022.1035507. PMID: 36406261; PMCID: PMC9672506.

- Schröder, S., Fraternali, F., Quan, X., Scott, D., Qian, F., & Pfuhl, M. (2011). When a module is not a domain: the case of the REJ module and the redefinition of the architecture of polycystin-1. Biochemical Journal, 435(3), 651-660.‏

- Hu, M., Ling, Z. & Ren, X. Extracellular matrix dynamics: tracking in biological systems and their implications. J Biol Eng 16, 13 (2022). https://doi.org/10.1186/s13036-022-00292-x

- Xu, M., Ma, L., Bujalowski, P. J., Qian, F., Sutton, R. B., & Oberhauser, A. F. (2013). Analysis of the REJ module of polycystin-1 using molecular modeling and force-spectroscopy techniques. Journal of Biophysics, 2013.‏

- Kurbegovic, A., Kim, H., Xu, H., Yu, S., Cruanès, J., Maser, R. L., & Qian, F. (2014). Novel functional complexity of polycystin-1 by GPS cleavage in vivo: role in polycystic kidney disease. Molecular and cellular biology, 34(17), 3341-3353.‏

- Weston, B. S., Malhas, A. N., & Price, R. G. (2003). Structure–function relationships of the extracellular domain of the autosomal dominant polycystic kidney disease-associated protein, polycystin-1. FEBS letters, 538(1-3), 8-13.‏

- Hardy E, Tsiokas L. Polycystins as components of large multiprotein complexes of polycystin interactors. Cell Signal. 2020 Aug;72:109640. doi: 10.1016/j.cellsig.2020.109640. Epub 2020 Apr 17. PMID: 32305669; PMCID: PMC7269800.

- Babich, V., Zeng, W. Z., Yeh, B. I., Ibraghimov-Beskrovnaya, O., Cai, Y., Somlo, S., & Huang, C. L. (2004). The N-terminal extracellular domain is required for polycystin-1-dependent channel activity. Journal of Biological Chemistry, 279(24), 25582-25589.‏

- Pastor-Pareja, J. C. (2020). Atypical basement membranes and basement membrane diversity–what is normal anyway. Journal of cell science, 133(8), jcs241794.

- Nigro EA, Boletta A. Role of the polycystins as mechanosensors of extracellular stiffness. Am J Physiol Renal Physiol. 2021 May 1;320(5):F693-F705. doi: 10.1152/ajprenal.00545.2020. Epub 2021 Feb 22. PMID: 33615892.

- Yiling Peng, Li Li, Jingyue Shang, Haili Zhu, Jinlin Liao, Xue Hong, Fan Fan Hou, Haiyan Fu and Youhua Liu. Macrophage promotes fibroblast activation and kidney fibrosis by assembling a vitronectin-enriched microenvironment. Theranostics 2023, Vol. 13, Issue 11

- Dzobo, K.; Dandara, C. The Extracellular Matrix: Its Composition, Function, Remodeling, and Role in Tumorigenesis. Biomimetics 2023, 8, 146. https://doi.org/10.3390/biomimetics8020146

- Sonbol, H. S., & AlRashidi, A. A. (2022). cloning and expression of receptor of egg jelly protein of polycystic kidney disease 1 gene in human receptor of egg jelly protein. pharmacophore, 13(6).‏

- Marvin, L. F., Roberts, M. A., & Fay, L. B. (2003). Matrix-assisted laser desorption/ionization time-of-flight mass spectrometry in clinical chemistry. Clinica chimica acta, 337(1-2), 11-21.

- Suvarna, K., Honda, K., Muroi, M., Kondoh, Y., Watanabe, N., & Osada, H. (2020). Identification of target protein for bio-active small molecule using photo-cross linked beads and MALDI-TOF mass spectrometry. Bio-protocol, 10(3), e3517-e3517.‏

- Tan, E., Chin, C. S. H., Lim, Z. F. S., & Ng, S. K. (2021). HEK293 cell line as a platform to produce recombinant proteins and viral vectors. Frontiers in bioengineering and biotechnology, 1288.‏

- Revathi Paramasivam, O., Gopisetty, G., Subramani, J., & Thangarajan, R. (2021). Expression and affinity purification of recombinant mammalian mitochondrial ribosomal small subunit (MRPS) proteins and protein–protein interaction analysis indicate putative role in tumourigenic cellular processes. The journal of biochemistry, 169(6), 675-692.‏

- Weston, B. S., Bagnéris, C., Price, R. G., & Stirling, J. L. (2001). The polycystin-1 C-type lectin domain binds carbohydrate in a calcium-dependent manner, and interacts with extracellular matrix proteins in vitro. Biochimica Et Biophysica Acta (BBA)-Molecular Basis of Disease, 1536(2-3), 161-176.‏

- Leavesley DI, Kashyap AS, Croll T, Sivaramakrishnan M, Shokoohmand A, Hollier BG, et al. Vitronectin--master controller or micromanager? IUBMB Life. 2013; 65: 807-818.

- Carreras-Planella L, Cucchiari D, Canas L, Juega J, Franquesa M, Bonet J, et al. Urinary vitronectin identifies patients with high levels of fibrosis in kidney grafts. J Nephrol. 2021; 34: 861-874.

- Hayashida M, Hashimoto K, Ishikawa T, Miyamoto Y. Vitronectin deficiency attenuates hepatic fibrosis in a non-alcoholic steatohepatitis-induced mouse model. Int J Exp Pathol. 2019; 100: 72-82.

- Butscheid, Y. (2006). Characterization of mouse polycystic kidney disease and receptor for egg jelly gene and protein in heterologous and native system. Philipps-Universität Marburg. https://doi.org/10.17192/z2006.0239

- Zencir C, Sivri F, Gulasti S, Turkdogan AK, Yilmaz M, Gungor H. Fibulin 1 and fibulin 5 as rule out tests for non-ST elevation myocardial infarction in the emergency setting. Kardiol Pol. 2019 Dec 19;77(12):1170-1175. doi: 10.33963/KP.15041. Epub 2019 Oct 30. PMID: 31663514.

- Scholze Alexandra, Bladbjerg Else-Marie, Sidelmann Johannes J, et al. Plasma concentrations of extracellular matrix protein fibulin-1 are related to cardiovascular risk markers in chronic kidney disease and diabetes. Cardiovascular Diabetology. 2013;12(1):6. doi:10.1186/1475-2840-12-6

- Halper, J. (2021). Basic Components of Connective Tissues and Extracellular Matrix: Fibronectin, Fibrinogen, Laminin, Elastin, Fibrillins, Fibulins, Matrilins, Tenascins and Thrombospondins. In: Halper, J. (eds) Progress in Heritable Soft Connective Tissue Diseases. Advances in Experimental Medicine and Biology, vol 1348. Springer, Cham. https://doi.org/10.1007/978-3-030-80614-9_4

- Inci A, Akin O, Ellidag HY, Eren E, Dolu S, Sari F. Fibulin Levels in Autosomal Dominant Polycystic Kidney Disease and Its Relationship to Arterial Stiffness. Clin Lab. 2017 Nov 1;63(11):1869-1874. doi: 10.7754/Clin.Lab.2017.170617. PMID: 29226648.

- Sun, B., Ding, B., Chen, Y. Chuang Peng and Xu Chen. AFAP1L1 promotes gastric cancer progression by interacting with VAV2 to facilitate the CDC42-mediated activation of ITGA5 signaling pathway. J Transl Med 21, 18 (2023). https://doi-org.sdl.idm.oclc.org/10.1186/s12967-023-03871-8

- Yao G, Su X, Nguyen V, Roberts K, Li X, Takakura A, Plomann M, Zhou J. Polycystin-1 regulates actin cytoskeleton organization and directional cell migration through a novel PC1-Pacsin 2-N-Wasp complex. Hum Mol Genet. 2014 May 15;23(10):2769-79. doi: 10.1093/hmg/ddt672. Epub 2014 Jan 2. PMID: 24385601; PMCID: PMC3990174.

- Streets AJ, Prosseda PP, Ong AC. Polycystin-1 regulates ARHGAP35-dependent centrosomal RhoA activation and ROCK signaling. JCI Insight. 2020 Aug 20;5(16):e135385. doi: 10.1172/jci.insight.135385. PMID: 32663194; PMCID: PMC7455122.

Downloads

Published

2024-02-26

How to Cite

Alrashidi, A. A. ., & Sonbol, H. S. . (2024). Unveiling the Mediating Role of the REJ Region: PC1 and Extracellular Matrix Dynamics in ADPKD. Journal of Contemporary Medical Sciences, 10(1). https://doi.org/10.22317/jcms.v10i1.1508