Determine Biofilm Genes in Pseudomonas Aeruginosa Isolated from Clinical and Environmental Samples

Authors

  • Riyam Khalid Attallah AL-Mashhadani Safety and Medicine Department, General Military Industries, Baghdad, Iraq.
  • Mohammed Fadhil AboKsour Biology Department, College of Science, Mustansiriyah University, Baghdad, Iraq.
  • Osama Abdul Azeez Dakhil Physics Department, College of Science, Mustansiriyah University, Baghdad, Iraq.

DOI:

https://doi.org/10.22317/jcms.v10i3.1557

Keywords:

Pseudomonas aeruginosa, Biofilm, algD gene, pelf gene, and pslD gene.

Abstract

Objective: Isolates of Pseudomonas aeruginosa are an extremely adaptable bacterium that causes opportunistic diseases because of its varied metabolic pathways, genes, virulence factors, and considerable antibiotic resistance.

Methods: A total of 293 samples were collected from different places: 193 samples (% 65.87) of human samples and 100 samples (% 34.13) of wastewater samples in the period between 3rd September to 15th November 2023). Bacterial isolates were identified according to microscopic, cultural, and genetic characteristics. Antibiotic susceptibility of bacterial isolates was determined against twelve of the selected antibiotics. The biofilm production was done by using phenotypic ways (Congo red agar and Microtiter plate methods) as well as genotypic ways by detection of biofilm genes (algD, pelf, and pslD genes).

Results: Hundred-forty eight bacterial isolates were obtained, and sixty of these isolates were identified as Pseudomonas spp. (40.9%), twenty-six isolates of E. coli (17.9%), seventeen isolates of K. pneumoniae (11.3%), and forty-five isolates were beyond to other types of bacteria (30.1%), and out of sixty isolates of Pseudomonas spp., forty-two were identified as P. aeruginosa isolates. P. aeruginosa isolates revealed various resistance levels to antimicrobial agents gradually, ranging from 83.87% to Trimethoprim-sulfamethoxazole (SXT) to 3.22% to Aztreonam (AZT). Biofilm production by using the Congo red method showed that 27 isolates (64.28%) were positive results, while in the microtiter method, all forty-two isolates were positive (100%), the genetic detection showed that the AlgD gene was recognized in thirty-one isolates (73.8%), followed by Pelf and PslD genes in four isolates each (9.5%).

Conclusion: The isolation percentage showed a high occurrence of multi-drug resistance biofilm forming Pseudomonas spp. isolates which could be a critical indicator. Methods of biofilm detection showed that the microtiter plate method has accuracy more than the Congo red method; as well AlgD gene was prevalent compared with both other genes Pelf, and PslD.

References

Qin S. Pseudomonas aeruginosa: pathogenesis, virulence factors, antibiotic resistance, interaction with host, technology advances and emerging therapeutics. Signal Transduct Target Ther. 2022;7(1):199. doi:10.1038/s41392-022-01056-1

Moradali MF, Ghods S, and Rehm BHA. Pseudomonas aeruginosa lifestyle: A paradigm for adaptation, survival, and persistence. Front Cell Infect Microbiol. 2017;7:39. doi:10.3389/fcimb.2017.00039.

Pachori P, Gothalwal R, and Gandhi P. Emergence of antibiotic resistance Pseudomonas aeruginosa in intensive care unit. Genes and Dis. 2019;2(6):109–119. doi: 10.1016/j.gendis.2019.04.001.

Khan J, Tarar SM, Gul I, Nawaz U, and Arshad M. Challenges of antibiotic resistance biofilms and potential combating strategies: a review. Biotech. 2021;11(4):428-39. doi: 10.1007/s13205-021-02707-w.

Ghssein G and Ezzeddine Z. A Review of Pseudomonas aeruginosa Metallophores: Pyoverdine, Pyochelin and Pseudopaline. Biol. 2022;18(12):12.339-44. doi: 10.3390/biology11121711.

Sultan M, RArya R, and Kim K. Roles of two-component systems in pseudomonas aeruginosa virulence. Int J Mol Sci. 2021;22(4): 475-487. doi: 10.3390/ijms222212152.

Abo-Ksour MF. Presence of Extended-Spectrum β-Lactamases Genes in E. coli Isolated from Farm Workers in the South of London. Int J Pharm Qua Assur. 2018; 9(1); 64-67.

Grace A, Sahu R, Owen DR, and Dennis VA. Pseudomonas aeruginosa reference strains PAO1 and PA14: A genomic, phenotypic, and therapeutic review. Fron Micro. 2022; 13(33):75-82. doi: 10.3389/fmicb.2022.1023523.

Poulsen BE . Defining the core essential genome of Pseudomonas aeruginosa. Proc Natl Acad Sci USA. 2019:20(116): 35. doi: 10.1073/pnas.1900570116.

Iraida E, Robledo 1, Edna EA, Guillermo JV. Detection of the KPC gene in Escherichia coli, Klebsiella pneumoniae, Pseudomonas aeruginosa, and Acinetobacter baumannii during a PCR-based nosocomial surveillance study in Puerto Rico. Antimic Age Chemo. 2011.55: (6)2968–2970. doi:10.1128/AAC.01633-10

Mohammed F, AboKsour. Virulence genes detection in Brucella isolated from animals farms in west of Iraq. 2021. Biochemical and Cellular Archives 18(1):59-64. 0972-5075.

Hoceini A. Evaluation of Biofilm Forming Potential and Antimicrobial Resistance Profile of S. aureus and P. aeruginosa Isolated from Peripheral Venous Catheters and Urinary Catheters In Algeria, in vitro Study. Advanced Research in Life Sciences. 2023;7(1):83–92. doi: 10.2478/arls-2023-0010.

Fahim MK, AboKsour MF, Hadi S. Bioremediation by bacteria isolated from water contaminated with hydrocarbons. Revis Bionatura 2023;8 (3) 94 doi: 10.21931/RB/2023.08.03.94.

Da JL, Costa Lima, Alves LR, Da Paz JN, Rabelo MA, Maciel MV, and De Morais M. Analysis of biofilm production by clinical isolates of Pseudomonas aeruginosa from patients with ventilator-Associated pneumonia. Rev Bras Ter Intensiva. 2017;3(29):310–316. doi:10.5935/0103-507X.20170039.

Hassuna NA, Darwish MA, Sayed M, and Ibrahem RA. Molecular epidemiology and mechanisms of high-level resistance to meropenem and imipenem in pseudomonas aeruginosa. Infect Drug Resist. 2020;(1):285–293. doi: 10.2147/IDR.S233808.

LaBauve AE and Wargo MJ. Growth and laboratory maintenance of Pseudomonas aeruginosa. Curr Protoc Microbiol. 2012. doi: 10.1002/9780471729259.mc06e01s25.

Langendonk RF, Neill DR, and Fothergill JF. The Building Blocks of Antimicrobial Resistance in Pseudomonas aeruginosa: Implications for Current Resistance-Breaking Therapies. Fron Cellu Inf Micro. 2021;7(11)698-14. DOI: 10.3389/fcimb.2021.665759.

Ahmed MR, Mohammed FA, Mohammed FA, Srwa HM. Evaluation of Anti-Biofilm Formation Effect of Nickel Oxide Nanoparticles (NiO-NPs) Against Methicillin-Resistant Staphylococcus Aureus (MRSA). Int. J. Nanosci. Nanotechnol.2021; 4(17): 221-230.

Chimi LY, Noubom M, Bisso BN, Singor Njateng GS, Dzoyem JP. Biofilm Formation, Pyocyanin Production, and Antibiotic Resistance Profile of Pseudomonas aeruginosa Isolates from Wounds. Int J Microbiol. 2024;1207536. doi: 10.1155/2024/1207536.

Abdulhaq N, Nawaz Z, Zahoor MA, Siddique AB. Association of biofilm formation with multi drug resistance in clinical isolates of Pseudomonas aeruginosa. EXCLI J. 2020;19:201-208. doi: 10.17179/excli2019-2049.

Sultan M and Nabiel Y. Tube method and Congo red agar versus tissue culture plate method for detection of biofilm production by uropathogens isolated from midstream urine: Which one could be better. African Journal of Clinical and Experimental Microbiology2018;1(20):760-771.

Gurunathan S, Thangaraj P, Das J, Kim JH. Antibacterial and antibiofilm effects of Pseudomonas aeruginosa derived outer membrane vesicles against Streptococcus mutans. Heliyon. 2023;9(12):e22606. doi:10.1016/j.heliyon.2023.e22606.

Almeida AC, de Sá Cavalcanti FL, Vilela MA, Gales AC, de Morais MA Jr, Camargo de Morais MM. Escherichia coli ST502 and Klebsiella pneumoniae ST11 sharing an IncW plasmid harbouring the bla(KPC-2) gene in an Intensive Care Unit patient. Int J Antimicrob Agents. 2012;40(4):374-376. doi:10.1016/j.ijantimicag.2012.05.022.

Rajabi H, Salimizand H, Khodabandehloo M, Fayyazi A, Ramazanzadeh R. Prevalence of algD, pslD, pelF, Ppgl, and PAPI-1 Genes Involved in Biofilm Formation in Clinical Pseudomonas aeruginosa Strains. Biomed Res Int. 2022;716087. doi:10.1155/2022/1716087.

Wang X, Liu M, Yu C, Li J, and Zhou X. Biofilm formation: mechanistic insights and therapeutic targets,” Molecular Biomedicine. 2023;4(1): 457-461.doi: 10.1186/s43556-023-00164-w.

D'Arpa P, Karna SLR, Chen T, Leung KP. Pseudomonas aeruginosa transcriptome adaptations from colonization to biofilm infection of skin wounds. Sci Rep. 2021;11(1):20632. doi:10.1038/s41598-021-00073-4

Rheima, A. M., Al Marjani, M. F., Aboksour, M. F., Mohammed, S. H. Evaluation of Anti-Biofilm Formation Effect of Nickel Oxide Nanoparticles (NiO-NPs) Against Methicillin-Resistant Staphylococcus Aureus (MRSA). Intl J Nano Nanotech. 2021;17(4): 221-230.

Cherny KE, Sauer K. Pseudomonas aeruginosa Requires the DNA-Specific Endonuclease EndA To Degrade Extracellular Genomic DNA To Disperse from the Biofilm. J Bacteriol. 2019;22;201(18):59-69. doi:10.1128/JB.00059-19.

Downloads

Published

2024-07-02

How to Cite

AL-Mashhadani, R. K. A., AboKsour, M. F. ., & Dakhil, O. A. A. . (2024). Determine Biofilm Genes in Pseudomonas Aeruginosa Isolated from Clinical and Environmental Samples. Journal of Contemporary Medical Sciences, 10(3). https://doi.org/10.22317/jcms.v10i3.1557