Biological Activities and Importance of the Medicinal Plant, Commiphora gileadensis Collected from Makka Region, Saudi Arabia
DOI:
https://doi.org/10.22317/jcms.v10i4.1599Keywords:
Commiphora gileadensis, Biofilm, Antimicrobial agent, Plant Extracts, Multidrug-resistant, BacteriaAbstract
Objective: This study aimed to discover safe antibacterial and antibiofilm agents from natural sources to control resistant bacteria.
Methods: C. gileadensis leaves and stems were collected, identified, and extracted using different organic solvents, methanol, ethyl acetate, chloroform, and hot water. The tested bacteria were multidrug-resistant Escherichia coli, Acinetobacter baumannii, Listeria monocytogenes, Serratia marcescens, Klebsiella pneumonia, Staphylococcus aureus, Pseudomonas aeruginosa. Crystal violet method was used to detect biofilm formation while the phenol-sulphonic acid method to measure exopolysaccharide contents, which are an effective factor in biofilm formation.
Results: No significant differences were noted in the biological activities between leave and stem. Ethyl acetate and chloroform extracts showed lower activities. Still, hot water extract showed the weakest activities.There is a synergistic effect between the Commiphora extract and some antibiotics, especially Amoxicillin, Polymixin B, and Tetracycline. The highest inhibition of biofilm was recorded against K. pneumonia which had the highest EPS content (0.29 ±0.04 μg/mg of cells), decreased after treatment with plant extract by 39%. Cytotoxicity studies using Artimia salina as a test organism were conducted for the methanolic extracts, which showed antitumor activity against two cell lines, MCF-7 (breast cancer) and HepG2 (hepatocellular carcinoma). Commiphora extract showed antioxidant activity using two different protocols.
Conclusion, the methanolic extract of Commiphora singly or in combination with antibiotics inhibit many pathogenic bacteria that form biofilm and recorded antitumor and antioxidant activities.
References
Kaur GJ and Arora DS. (2009). Antibacterial and phytochemical screening of Anethum graveolens, Foeniculum vulgare and Trachyspermum ammi. BMC. Comp. Alter. Med., 9: 30–39.
Joshi B, Sah GP, Basnet BB, Bhatt MR, Sharma D, Subedi K, Pandey J and Malla R, (2011). Phytochemical extraction and antimicrobial properties of different medicinal plants: Ocimum sanctum (Tulsi), Eugenia caryophyllata (Clove), Achyranthes bidentata (Datiwan) and Azadirachta indica (Neem). Journal of Microbiology and Antimicrobials, 3: 1–7.
Balasankar D, Vanilarasu K, SelvaPreetha P, Rajeswari S, Umadevi M, Bhowmik D (2013). Senna – A Medical Miracle Plant. Journal of Medicinal Plants Studies, 1(3). p. 41–47.
Aly MM, Al-Ghamdi M, Bafeel SO and Khedr AM. (2013). Antimicrobial Activities and Phytochemical Analysis of the Essential Oil of Lavandula dentata and Plectranthus tenuiflorus, Collected From Al Baha Region, Saudi. Arabia. Life Sci J; 10(4): 3302–3309.
El Sayed H and Aly MM (2014). Antibacterial activities of six medicinal plants used traditionally by Saudi people to treat common diseases. British Biotechnology Journal, 4(4): 499–510.
Hilo S (1996). The Medicinal Properties of some Azalea Flora in Arabian Peninsula. Dar Almanar, P.O. Box 1250, Jeddah 21431, Saudi Arabia.
Byng J.W. The Flowering Plants Handbook: A Practical Guide to Families and Genera of the World. Plant Gateway Ltd.; Hertford, UK: 2014.
Langenheim J.H. Plant Resins: Chemistry, Evolution, Ecology and Ethnobo-Tany. Timber Press; Portland, OR, USA: Cambridge, UK: 2003.
Safhi FA, ALshamrani SM, Jalal AS, El-Moneim DA, Alyamani AA, Ibrahim AA. Genetic Characterization of Some Saudi Arabia’s Accessions from Commiphora gileadensis Using Physio-Biochemical Parameters, Molecular Markers, DNA Barcoding Analysis and Relative Gene Expression. Genes (Basel). 2022 Nov 11;13(11):2099.
Iluz D., Hoffman M., Gilboa-Garber N., Amar Z. Medicinal properties of Commiphora gileadensis. Afr. J. Pharm. Pharmacol. 2010;4:516–520.
Soromessa T (2013). Ecological phytogeography: A case study of Commiphora Species. Journal of Science, Technology and Arts Research. 2:93–104. doi: 10.4314/star.v2i3.98910
Al-Snafi, A. E., & Al-Baghdadi, M. A. (2017). Chemical constituents and pharmacological activities of Commiphora molmol and Commiphora gileadensis: A review. Journal of Pharmaceutical Sciences and Research, 9(9), 1513–1521.
Al-Bayati, F. A., & Al-Mola, H. F. (2008). Antibacterial and antifungal activities of different parts of Commiphora gileadensis. Journal of Ethnopharmacology, 118(3), 326–332.
Al-Musayeib, N. M., Mothana, R. A., Al-Said, M. S., & Al-Massarani, S. M. (2014). In vitro antibiofilm activity of Commiphora gileadensis against methicillin-resistant Staphylococcus aureus and Pseudomonas aeruginosa. BMC Complementary and Alternative Medicine, 14(1), 1–8.
Jastaniah S D., Jamal T Y, Amashah R H., Aly M M. New Strategies for Inhibition of Listeria monocytogenes and Klebsiella pneumoniae Biofilm Formation and Persistence. Contemp Med Sci Vol. 8, No. 6, November-December 2022: 400–407.
Bauer AW, Kirby W M, Sherris JC, and Turck M. (1966). Antibiotic susceptibility testing by a standardized single disk method. American Journal of Clinical Pathology, 45 (4): 493–96.
CLSI, Performance Standards for Antimicrobial Disk Susceptibility Tests, Approved Standard, 7th ed., CLSI document M02-A11. Clinical and Laboratory Standards Institute, 950 West Valley Road, Suite 2500, Wayne, Pennsylvania 19087, USA, 2012.
Migahid A. (1996). Flora of Saudi Arabia. University Libraries, King Saudi University P.O. Box 22480 Riyadh 11495, Saudi Arabia, King Saudi University Press.
Holder S I and Boyce AT (1994). Agar well diffusion assay testing of bacterial susceptibility to various antimicrobials in concentrations non-toxic for human cells in culture. Burns, Volume 20, Issue 5, Pages 426–429, https://doi.org/10.1016/0305-4179(94)90035-3.
Bonnavero V, Chevaleier J, and Cremieux A. (1998). “A Rapid Method Outomatized Method for Assyment of the Fungal Activity of Natural and Synthetic Agents.” In 6th Congres Mediteraniun of Chemo-Therapy, 22–27. Taormina, Italy.
Lo Cantore P, Iacobellis NS, de Marco A, Capasso F, Senatore F (2005). Antibacterial activity of Coriandrumsativum L. and Foeniculumvulgare Miller var. vulgare (Miller) essential oils. J Agric Food Chem 53: 57–61.
Adoum OA. (2009). Determination of toxicity levels of some savannah plants using brine shrimp test (BST). Bayero Journal of Pure and Applied Sciences, 2 (1): 135–38.
Amritha C.A, Kumaravelu P, Chellatha D. D (2015), Evaluation of Anti Cancer Effects of DPP-4 Inhibitors in Colon Cancer- An Invitro Study. Volume 9, Issue 12, Page FC1. DOI: https://doi.org/10.7860/JCDR/2015/.6979
Christensen, G.D., Baldassarri, L., & Simpson, W.A. (1995). Methods for studying microbial colonization of plastics. In Methods in Enzymology (Vol.253, pp. 477–500). Academic Press.
Smitinont T, Tansakul C, Tanasupawat S, Keeratipibul S, Navarini L, Bosco M, Cescutti P. (1999). Exopolysaccharide-producing lactic acid bacteria strains from traditional Thai fermented foods: isolation, identification, and exopolysaccharide characterization. International Journal of Food Microbiology, 51(2–3), 105–111. https://doi.org/10.1016/S0168-1605(99)00094-X.
Dubois, M., Gilles, K. A., Hamilton, J. K., Rebers, P. t., & Smith, F. (1956). Colorimetric method for determination of sugars and related substances. Analytical Chemistry, 28(3), 350–356.
Kodali, V., & Sen, R. (2011). Partial structural elucidation of an antioxidative exopolysaccharide from a probiotic bacterium. Journal of Natural Products, 8, 1692–1697.
Ishakani AH, Joshi NH, Ayaz M, Sumara K Vadher KH. Antioxidant Potential, Polyphenols and Diphenol Content of Seaweed Available at Veraval Coast, Saurashtra Region, Gujarat. Indian Journal of Science and Technology, 2016, 9 (4), 1–6. https://doi.org/10.17485/ijst/2016/v9i4/78665
Öztürk M, Aydoğmuş-Öztürk F, Duru ME, Topçu G. Antioxidant activity of stem and root extracts of Rhubarb (Rheum ribes): an edible medicinal plant. FoodChem. 2007;103:623–630. Doi: 10.1016/j.foodchem.2006.09.005.
El-Kamali H, Hamza M, El-Amir M. (2005). Antibacterial activity of the essential oil from Cymbopogon nervatus inflorescence. Fitoterapia, 76, 446–449.
Gronhaug TE, Glaeserud S, Skogsrud M, Ballo N, Bah S, Diallo D, Paulsen BS (2008). Ethnopharmacological survey of six medicinal plants from Mali, West Afr. J. Ethnobiol., 4(26): 1186–1746.
Hashim, GM , Almasaudi SB, Azhar E, Al Jaouni S K, Harakeh S. (2017). Biological activity of Cymbopogon schoenanthus essential oil. Saudi Journalof Biological Sciences, 24(7):1458–1464. http://dx.doi.org/10.1016/j.sjbs.2016.06.001
Gustafson J, Liew Y, Chew S, Markham J, Bell H, Wyllie S, Warmington J. (1998). Effects of tea tree oil on Escherichia coli. Lett. Appl. Microbiol., 26, 194–198.
Mordmuang A., Brouillette E., Voravuthikunchai S. P., Malouin F. (2019). Evaluation of a Rhodomyrtus tomentosa ethanolic extract for its therapeutic potential on Staphylococcus aureus infections using in vitro and in vivo models of mastitis. Vet. Res. 50, 49. 10.1186/s13567-019-0664-9.
Wink M. (2020). Evolution of the angiosperms and Co-evolution of secondary metabolites, especially of alkaloids. Co-evolution of secondary metabolites. Editors Mérillon J.-M., Ramawat K. G. (Cham, Switzerland: Springer International Publishing;, 151–174.
Al Masoudi SB, Aly MM, Al-humidi NQ, Halwani M. (2013). Incidence and prevalence of Acinetobacter baumannii in King Fahd General Hospital, Saudi Arabia. Life Sci J.;10(4):1702–1710.
Kim, J. H., Rhim, S. R., Kim, K. T., Paik, H. D., & Lee, J. Y. (2014). Simultaneous detection of Listeria monocytogenes, Escherichia coli O157:H7, Bacillus cereus, Salmonella spp., and Staphylococcus aureus in low-fatted Milk by multiplex PCR. Korean Journal for Food Science of Animal Resources, 34, 717–723.
Aly MM and Bafeel S. (2010). Screening for antifungal activities of some medicinal plants used traditionally in Saudi Arabia. J. Appl. Anim. Res., 38:39–44.
Aly MM, Gumgumjee N M. (2011). Antimicrobial efficacy of Rheum palmatum, Curcuma longa and Alpinia officinarum extracts against some pathogenic microorganisms. African J. Biotechnology.;10(56):12058–12063.
Moussa A, Noureddine D, Mohamed HS, Abdelmelek M, Saad A. (2012). Antibacterial activity of various honey types of Algeria against Staphylococcus aureus and Streptococcus pyogenes, Asian Pacific Journal of Tropical Medicine, 5(10): 773–776. doi.org/10.1016/S1995-7645(12)60141–2.
Deans S, Ritchie G, (1987). Antibacterial properties of plant essential oils. Int. J. Food Microbiol., 5, 165–180.
Doughari J. H, El-mahmood A. M. and Tyoyina I (2008). Antimicrobial activity of leaf extracts of Senna obtusifolia (L). African Journal of Pharmacy and Pharmacology, 2(1), p. 007–013.
Adoum OA, Akinniyi JA, Omar T (1997). The effect of geographical location on the antimicrobial activities and trace element concentrations in the root of Calotropisprocera (Ait.) R. Br, Annals of Borno, 13(14): 199–207.
Odugbemi T (2008). A textbook of medicinal plants from Nigeria, University of Lagos Press, Nigeria, pp. 20–323.
Kumar A, IIavarasan R, Jayachandran T, Decaraman M, Aravindhan P, Padmanabhan N, Krishman M R V (2009). Phytochemicals investigation on a tropical plant, Syzgium cumini from Kattuppalayam, Erode District, Tamil Nadu, South India. Pak. J. Nutr., 8(1): 83–85.
Spellberg B, Bartlett JG, Gilbert DN (2013). The future of antibiotics and resistance. N Engl J Med 368: 299–302.
Cha SM, Han SB, Lee YS, Cha JD (2015). Synergistic effect of the ethanol extract of Alismatis rhizoma against oral pathogens. J Oral Bio 2: 7.
Lenhard JR, Smith NM, Bulman ZP, Tao X, Thamlikitkul V, Shin BS, Nation RL, Li J, Bulitta JB, Tsuji BT. High-Dose Ampicillin-Sulbactam Combinations Combat Polymyxin-Resistant Acinetobacter baumannii in a Hollow-Fiber Infection Model. Antimicrob Agents Chemother. 2017 Feb 23;61(3):e01268-16. doi: 10.1128/AAC.01268-16. PMID: 28052852; PMCID:PMC5328540.
Saquib S. A., Al Qahtani N A, Ahmad I, Arora S, Asif S M, Javali1 M A, Nisar N. (2021). Synergistic antibacterial activity of herbal extracts with antibiotics on bacteria responsible for periodontitis. J Infect Dev Ctries 2021; 15(11):1685–1693. doi:10.3855/jidc.14904
Amin A, Hussain S. (2018). Hepato toxic or hepatoprotective: A review of hepatic effects of Citrullus colocynthis. J Pharmacogn Phytochem., 7(1):1226–1233.
Alfarrayeh I., Tarawneh K., Almajali D., Al-Awaida W. (2022). Evaluation of the Antibacterial and Antioxidant properties of the Methanolic extracts of four Medicinal plants selected from Wadi Al-Karak, Jordan related to their Phenolic contents. Res. J. Pharm. Technol., 15 , pp. 2110–2116, 10.52711/0974-360X.2022.00350
Ahmed S., Khan H., Aschner M., Mirzae H., Küpeli Akkol E., Capasso R. (2020) Anticancer potential of furanocoumarins: mechanistic and therapeutic aspects, Int. J. Mol. Sci., 21 , p. 5622.
Al Qaisi Y, Alfarrayeh I, Alsarayreh A, Khleifat K, Abu-Nwas N, Assessment of antioxidant potential, cytotoxicity, and anticancer activity of methanolic extracts from selected wild medicinal plants. Phytomedicine Plus, Volume 4, Issue 2, 2024,100534. https://doi.org/10.1016/j.phyplu.2024.100534.
Shimada K, Fujikawa K, Yahara K, Nakamura T. (1992). Antioxidative properties of xanthone on the auto oxidation of soybean in cylcodextrin emulsion. J Agri Food Chem 40:945–948.
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2024 Journal of Contemporary Medical Sciences
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.