Anti-Inflammatory Humulene-Type Sesquiterpenoids from Asteriscus Graveolens
DOI:
https://doi.org/10.22317/jcms.v10i5.1638Keywords:
Asteraceae, Terpenoids, lactones, Croton oil, SpectroscopyAbstract
Objectives: Inflammation is the initial physiological reaction of the immune system to infection or irritation, leading significant risk factors for several forms of cancer. The genus Asteriscus has been observed to possess a notable abundance of sesquiterpenes with anti-inflammatory properties. This study was designed to assess the anti-inflammatory activity of the sesquiterpenoids isolated from Asteriscus graveolens.
Methods: The organic extract of the Asteraceae plant A. graveolens was subjected to different chromatographic and spectroscopic techniques for isolation, purification, and identification of sesquiterpenoid contents. The isolated compounds were screened for anti-inflammatory activities in two animal models: rat paw edema and rat ear edema. Histopathological examinations as well as biochemical markers of inflammation were assessed. This was followed by in silico screening for anti-inflammatory activity.
Results: Four known sesquiterpenoids were isolated from A. graveolens, including two humulene derivatives, namely, 9-oxohumula-4-en-6,15-olide (1), and 9-oxohumula-1(10)(Z),4,7(E)-trien-6,15-olide (2) and two bisabolene derivatives, identified as bisabola-2,10-dien-1-one (3) and 6- hydroxybisabola-2,10-dien-1-one (4) described. In the rat paw edema model, compound 2 showed highest activity in preventing formation carrageenan-induced paw edema. This was confirmed by histopathological examinations that indicated partial preservation of the epidermal and dermal layers. Further, the compound significantly inhibited cyclooxygenase-2 (COX-2) and tumor necrosis factor-α (TNF-α) release. In the croton oil indued rat ear edema, compounds 2 and 4 significantly inhibited ear edema and protected against histopathological alterations. This was associated with prevention of myeloperoxidase (MPO) concentration in ear tissues. Molecular docking and molecular dynamic simulation indicated the affinity and docking stability of compounds 1-4 to the selected inflammatory protein.
Conclusion: Phytochemical investigation of A. graveolens resulted in the isolation and characterization of four sesquiterpenes. In particular, compound 2 showed potent anti-inflammatory activity in carrageenan rat paw edema and croton oil ear edema.
References
Debnath, T.; Kim, D.H.; Lim, B.O. Natural products as a source of anti-inflammatory agents associated with inflammatory bowel disease. Molecules 2013, 18, 7253–7270. https://doi.org/10.3390/molecules18067253.
Gautam, R.; Jachak, S.M. Recent developments in anti-inflammatory natural products. Med. Res. Rev. 2009, 29, 767–820. https://doi.org/10.1002/med.20156.
Da Silveira e Sá, R.D.C.; Andrade, L.N.; De Sousa, D.P. A review on antiinflammatory activity of monoterpenes. Molecules 2013, 18, 1227–1254. https://doi.org/10.3390/molecules18011227.
Azab, A.; Nassar, A.; Azab, A.N. Anti-inflammatory activity of natural products. Molecules 2016, 21, 1321. https://doi.org/10.3390/molecules21101321.
Cristofari, G.; Znini, M.; Majidi, L.; Mazouz, H.; Tomi, P.; Costa, J.; Paolini, J. Chemical diversity of essential oils from Asteriscus graveolens (Forssk.) Less.: Identification of cis-8-acetoxychrysanthenyl acetate as a new natural component. Chem. Biodivers. 2012, 9, 727–738. https://doi.org/10.1002/cbdv.201100118.
Benomari, F.Z.; Dib, M.E.A.; Muselli, A.; Costa, J.; Djabou. N. Comparative study of chemical composition of essential oils for two species of Asteriscus genus from Western Algeria. J. Essent. Oil. Res. 2019, 31, 414–424. https://doi.org/10.1080/10412905.2019.1579761.
Chaib, F.; Allali, H.; Bennaceur, M.; Flamini, G. Chemical composition and antimicrobial activity of essential oils from the aerial parts of Asteriscus graveolens (Forssk.) Less. and Pulicaria incisa (Lam.) DC.: Two asteraceae herbs growing wild in the Hoggar. Chem. Biodivers. 2017, 14, e1700092. https://doi.org/10.1002/cbdv.201700092.
Helmy, S.N.; Ezzat, S.R.; Naguib, M.H. Antioxidant, antibacterial activities and phytochemical screening of Asteriscus pygmaeus aerial parts ethanolic extract. GSC Biol. Pharm. Sci. 2019, 9, 041–046. https://doi.org/10.30574/gscbps.2019.9.3.0218.
Triana, J.; Eiroa, J.L.; Morales, M.; Perez, F.J.; Brouard, I.; Quintana, J.; Ruiz-Estévez, M.; Estévez, F.; León, F. Sesquiterpenoids isolated from two species of the Asteriscus Alliance. J. Nat. Prod. 2016, 79, 1292–1297. https://doi.org/10.1021/acs.jnatprod.5b01013.
Farah, R.; Mahfoud, H.M.; Mohamed, D.O.H.; Amoura; Roukia, H.; Naima, H.; Houria, M.; Imane, B.; Chaima, B. Ethnobotanical study of some medicinal plants from Hoggar, Algeria. J. Med. Plants. Res. 2015, 9, 820–827. https://doi.org/10.5897/jmpr2015.5805
Belhadi, F.; Ouafi, S.; Bouguedoura, N. Phytochemical composition and pharmacological assessment of callus and parent plant of Asteriscus graveolens (Forssk.) Less. from Algerian Sahara. Trop. J. Pharm. Res. 2020, 19, 1895–1901. https://doi.org/10.4314/tjpr.v19i9.14.
Znini, M.; Cristofari, G.; Majidi, L.; Mazouz, H.; Tomi, P.; Paolini, J.; Costa, J. Antifungal activity of essential oil from Asteriscus graveolens against postharvest phytopathogenic fungi in apples. Nat. Prod. Commun. 2011, 6, 1763–1768. https://doi.org/10.1177/1934578x1100601147.
Hammoud, L.; León, F.; Brouard, I.; Gonzalez-Platas, J.; Benayache, S.; Mosset, P.; Benayache, F. Humulene derivatives from Saharian Asteriscus graveolens. Tetrahedron Lett. 2018, 59, 2668–2670. https://doi.org/10.1016/j.tetlet.2018.05.079.
Rauter, A.P.; Branco, I.; Bermejo, J.; Gonzáles, A.G.; Garcıía-Grávalos, M.D.; Feliciano, A.S. Bioactive humulene derivatives from Asteriscus vogelii. Phytochemistry 2001, 56, 167–171.
Imieje, V.O.; Zaki, A.A.; Metwaly, A.M.; Eissa, I.H.; Elkaeed, E.B.; Ali, Z.; Khan, I.A.; Falodun, A. Antileishmanial derivatives of humulene from Asteriscus hierochunticus with in silico tubulin inhibition potential. Rec. Nat. Prod. 2022, 16, 150–171. https://doi.org/10.25135/rnp.253.21.01.1945.
Jakupovic, J.; Lehmann, L.; Bohlmann, F.; Hogdson, A. Nerolidol derivatives from Asteriscus sericeus. Phytochemistry 1987, 26, 2854–2855.
Dahmy, S. El.; Jakupovic, J.; Bohlmann, F.; Sarg, T. New humulene derivatives from Asteriscus graveolens. Tetrahedron 1985, 41, 309–316.
Ahmed, A.U. An overview of inflammation: Mechanism and consequences. Front. Biol. China 2011, 6, 274–281. https://doi.org/10.1007/s11515-011-1123-9.
Krishnamoorthy, S.; Honn, K.V. Inflammation and disease progression. Cancer Metastasis Rev. 2006, 25, 481–491. https://doi.org/10.1007/s10555-006-9016-0.
Whiteley, P.E.; Dalrymple, S.A. Models of inflammation: Carrageenaninduced paw edema in the rat. Curr. Protoc. Pharmacol. 2001, 00:5.4.1-5.4.3
Cui, J.; Jia, J. Natural COX-2 inhibitors as promising anti-inflammatory agents: An update. Curr. Med .Chem. 2021, 28, 3622–3646. https://doi.org/10.2174/1875533xmtewdmdin5.
van Loo, G.; Bertrand, M.J.M. Death by TNF: A road to inflammation. Nat. Rev. Immunol. 2023, 23, 289–303. https://doi.org/10.1038/s41577-022-00792-3.
Agmon-Levin, N.; Mosca, M.; Petri, M.; Shoenfeld, Y. Systemic lupus erythematosus one disease or many? Autoimmun Rev. 2012, 11, 593–595. https://doi.org/10.1016/j.autrev.2011.10.020.
Lajter, I.; Vasas, A.; Béni, Z.; Forgo, P.; Binder, M.; Bochkov, V.; Zupkó, I.; Krupitza, G.; Frisch R.; Kopp, B.; Hohmann, J. Sesquiterpenes from Neurolaena lobata and their antiproliferative and anti-inflammatory activities. J. Nat. Prod. 2014, 77, 576–582. https://doi.org/10.1021/np400834c.
Hai, C.T.; Luyen, N.T.; Giang, D.H.; Minh, B.Q.; Trung, N.Q.; Chinh, P.T.; Hau, D.V.; Dat, N.T. Atractylodes macrocephala rhizomes contain anti-inflammatory sesquiterpenes. Chem. Pharm. Bull. 2023, 71, 451–453. https://doi.org/10.1248/cpb.c22-00779.
Gábor, M. Carrageenan-induced paw edema in the rat and mouse. In Winyard PG, Willoughby DA (eds) Methods in molecular biology: Inflammation protocols methods in molecular biology. Humana Press Inc., Totowa: New Jersey, 2003, pp 129–138
Aratani, Y. Myeloperoxidase: Its role for host defense, inflammation, and neutrophil function. Arch. Biochem. Biophys. 2018, 640, 47–52. https://doi.org/10.1016/j.abb.2018.01.004.
Hayley, C.; Stephen, R.Z.; Sarah, F.; Billie, G-C.; Fiona, B.; Lisa, W.; Matthew, K.; Sally, B.; Stephen, H.; Bryan, B. The influence of the neighborhood physical environment on early child health and development: A review and call for research. Heal Place 2015, 33, 25–36.
Paço, A.; Brás, T.; Santos, J.O.; Sampaio, P.; Gomes, A.C.; Duarte, M.F. Antiinflammatory and immunoregulatory action of sesquiterpene lactones. Molecules 2022, 27, 1142. https://doi.org/10.3390/molecules27031142.
Wen-Guang, L.; Xiao-Yu, Z.; Yong-Jie, W.; Xuan, T. Anti-inflammatory effect and mechanism of proanthocyanidins from grape seeds. Acta Pharmacol. Sin. 2001, 22, 1117–1120.
Bancroft, J.D.; Marilyn, G. Theory and Practice of Histological Techniques, 6th ed. Churchill Livingstone: London, 2008.
Trott, O.; Olson, A.J. AutoDock Vina: Improving the speed and accuracy of docking with a new scoring function, efficient optimization, and multithreading. J. Comput. Chem. 2009, 31, 455–461. https://doi.org/10.1002/jcc.21334.
Lee, J.; Cheng, X.; Swails, J.M.; Yeom, M.S.; Eastman, P.K.; Lemkul, J.A.; Wei, S.; Buckner, J.; Jeong, J.C.; Qi, Y.; Jo, S.; Pande, V.S.; Case, D.A.; Brooks, C.L.; MacKerell, A.D.; Klauda, J.B.; Im, W. CHARMM-GUI input generator for NAMD, GROMACS, AMBER, OpenMM, and CHARMM/OpenMM simulations using the CHARMM36 additive force field. J. Chem. Theory Comput. 2016, 12, 405–413. https://doi.org/10.1021/acs.jctc.5b00935.
Jo, S.; Kim, T.; Iyer, V.G.; Im, W. CHARMM-GUI: A web-based graphical user interface for CHARMM. J. Comput. Chem. 2008, 29, 1859–1865. https://doi.org/10.1002/jcc.
Phillips, J.C.; Braun, R.; Wang, W.; Gumbart, J.; Tajkhorshid, E.; Villa, E.; Chipot, C.; Skeel, R.D.; Kalé, L.; Schulten, K. Scalable molecular dynamics with NAMD. J. Comput. Chem. 2005, 26, 1781–1802. https://doi.org/10.1002/jcc.20289.
Humphrey, W.; Dalke, A.; Schulten, K. VMD: Visual molecular dynamics. J. Mol. Graph. 1996, 14, 33–38.
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2024 Journal of Contemporary Medical Sciences
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.