Improved Exopolysaccharide Production from Lacticaseibacillus Paracasei SH6 Using Mutagen EMS
DOI:
https://doi.org/10.22317/jcms.v11i1.1706Keywords:
Lacticaseibacillus paracasei; Exopolysaccharide (EPS); Ethyl methanesulfonate (EMS); Dextran.Abstract
Objective: This study aims to enhance exopolysaccharide (EPS) production from a local isolate of Lacticaseibacillus paracasei through ethyl methanesulfonate (EMS)-induced chemical mutagenesis.
Methods: Two isolates, L. paracasei SH5 and SH6, were obtained from fermented beverages (boza and cider) and initially screened for EPS production. The SH6 isolate was subjected to EMS-induced mutation. Antibiotic-resistant mutants were selected from the inhibition zones surrounding antibiotic discs. EPS production was assessed through total soluble carbohydrate content analysis, HPLC calculations, and gene expression studies.
Results: Among the selected mutants, M8 exhibited the highest EPS production, with a yield of 566 mg/100 ml compared to the wild-type isolate, which produced 362 mg/100 ml. Other mutants (M1, M4, and M7) also showed increased EPS levels, reaching 411, 488, and 457 mg/100 ml, respectively. Mutant M8 demonstrated a 1.5-fold increase in EPS production compared to the wild type.
Conclusion: The findings confirm that EMS-induced mutagenesis effectively enhances EPS production in L. paracasei. This improvement has significant implications for biotechnological applications, particularly in the pharmaceutical and food industries.
References
Quinto E.J., Jiménez P., Caro I., Tejero J., Mateo J. and Girbés T. (2014). Probiotic Lactic Acid Bacteria: a review. Food Nutr. Sci., 5(18):1765. https://doi.org/10.4236/fns.2014.518190
Oleksy-Sobczak M. and Klewicka E. (2020). Optimization of Media Composition to Maximize the Yield of Exopolysaccharides Production by Lactobacillus rhamnosus Strains. Prob. Antimicrob. Proteins, 12:774-83. https://doi.org/10.1007/s12602-019-09581-2
Widyastuti Y. Rohmatussolihat, and Febrisiantosa A. (2014). The Role of Lactic Acid Bacteria in Milk Fermentation. Food Nutr. Sci., 5(4):435-442. https://doi.org/10.4236/fns.2014.54051
Mohd Nadzir M., Nurhayati R.W., Idris F.N. and Nguyen M.H. (2021). Biomedical Applications of Bacterial Exopolysaccharides: A Review. Polymers, 13(4):530. https://doi.org/10.3390/polym13040530
Donot F., Fontana A., Baccou J.C. and Schorr-Galindo S. (2012). Microbial exopolysaccharides: Main examples of Synthesis, Excretion, Genetics and Extraction. Carbohydr. Polym., 87(2):951-962. https://doi.org/10.1016/j.carbpol.2011.08.083
Flemming H.C. (2016). EPS-Then and Now. Microorganisms, 4(4):41-52. https://doi.org/10.3390/microorganisms4040041
Leja K., Myszka K. and Czaczyk K. (2011). Genome shuffling: a method to improve biotechnological processes. BioTechnologia. Journal of Biotechnology Computational Biology and Bionanotechnology, 92(4):345-351. https://doi.org/10.5114/bta.2011.46551
Asgher M., Urooj Y., Qamar S.A. and Khalid N. (2020). Improved exopolysaccharide production from Bacillus licheniformis MS3: Optimization and structural/functional characterization. International journal of biological macromolecules, 151:984-992. https://doi.org/10.1016/j.ijbiomac.2019.11.094
Kothari V., Mishra T. and Kushwah P. (2014). Mutagenic effect of microwave radiation on exopolysaccharide production in Xanthomonas campestris. Curr. Trends Biotechnol. Pharm., 8(1): 29-37. ISSN 0973-8916 (Print), 2230-7303 (Online).
Khattab A.A. (2002). Molecular and Biochemical Studies of Genetically Constructed Lactic Acid Bacteria, PhD dissertation, Tanta University (Egypt).
Khattab A.A., Ibrahim M.I.M. and El-Kady A.A. ( 2018). Ochratoxin A biosorption onto genetically improved of Lactobacillus delbrueckii mutants. Int. Food Res J., 25(2):515-522. ISSN 1985-4668
Hwang C.F., Chang J.H., Houng J.Y., Tsai C.C., Lin C.K. and Tsen H.Y. (2012). Optimization of medium composition for improving biomass production of Lactobacillus plantarum Pi06 using the Taguchi array design and the Box-Behnken method. Biotechnol. Bioprocess Eng., 17:827-834. https://doi.org/10.1007/s12257-012-0007-4
Martini C., Verruma-Bernardi M.R., Borges M.T.M.R., Margarido L.A.C. and Ceccato-Antonini, S.R. (2011). Yeast composition of sugar cane juice in relation to plant varieties and seasonality. Biosci. j., 27(5): 710- 717.
Manochai P., Phimolsiripol Y. and Seesuriyachan P. (2014). Response Surface Optimization of Exopolysaccharide Production from Sugarcane Juice by Lactobacillus confusus TISTR 1498. Chiang Mai Univ. J. Nat. Sci, 13(1):425-438. https://doi.org/10.12982/cmujns.2014.0046
Allaith S.A., Abdel-aziz M.E., Thabit Z.A., Altemimi A.B., Abd El-Ghany K., Giuffrè A.M., Al-Manhel A.J.A., Ebrahim H.S., Mohamed R.M. and Abedelmaksoud T.G. (2022). Screening and molecular identification of lactic acid bacteria producing β-glucan in boza and cider. Fermentation, 8(8):350. https://doi.org/10.3390/fermentation8080350
Ale E.C., Batistela V.A., Correa Olivar G., Ferrado J.B., Sadiq S., Ahmed H.I., Reinheimer J.A., Vera‐Candioti L., Laws A.P. and Binetti A.G. (2020). Statistical optimisation of the exopolysaccharide production by Lactobacillus fermentum Lf2 and analysis of its chemical composition. Int. J. Dairy Technol., 73(1):76-87. https://doi.org/10.1111/1471-0307.12639
Othman N.Z., Din A.R.J.M., Azam Z.M., Rosli M.A. and Sarmidi M.R. (2018). Statistical Optimization of Medium Compositions for High Cell Mass and Exopolysaccharide Production by Lactobacillus plantarum ATCC 8014. Appl. Food Biotechnol., 5(2):87-96. https://doi.org/10.22037/afb.v5i2.19299
Gerhardt P., Murray R.G.E., Wood W.A., Krieg N. R. (1994). Methods for general and molecular bacteriology. ASM (Washington DC). ISBN 1-5558-048-9, p 518
Kim D.H., Chon J.W., Kim H., Kim H.S., Choi D., Hwang D.G. and Seo K.H. (2015). Detection and Enumeration of Lactic Acid Bacteria, Acetic Acid Bacteria and Yeast in Kefir Grain and Milk Using Quantitative Real‐Time PCR. J. Food Saf., 35(1):102-107. https://doi.org/10.1111/jfs.12153
Turpin W., Humblot C., Guyot J.P. (2011). Genetic screening of functional properties of lactic acid bacteria in a fermented pearl millet slurry and in the metagenome of fermented starchy foods. Appl. Environ. Microbiol., 77(24): 8722–8734. https://doi.org/10.1128/AEM.05988-11
Yuan J.S., Reed A., Chen F. and Stewart C.N. (2006). Statistical analysis of real-time PCR data. BMC bioinformatics, 7(85): 1-12. https://doi.org/10.1186/1471-2105-7-85
Freese E.B. (1961). Transitions and transversions induced by depurinating agents. National Academy of Sciences, 47(4):540-545. https://doi.org/10.1073/pnas.47.4.540
Radwan A.A., Darwesh O.M., Mohamed K.A., Shady H.M.A., and Emam, M.T. (2023). Screening, Genetic Improvement, and Production Optimization of TA-Protease for Biofilm Removal of Dairy Sporeformers. Middle East J. Agric. Res., 12(4): 587-608. https://doi.org/10.36632/mejar/2023.12.4.38
Bazaraa W.A., Abd El-Hafez A.E.N. and Ibrahim E.M. (2021). Mutagenesis and protoplast fusion for enhanced bacteriocins production. Applied Food Biotechnology, 8(2):133-142. https://doi.org/10.22037/afb.v8i2.32505
Badel S., Bernardi T. and Michaud P. (2011). New perspectives for Lactobacilli exopolysaccharides. Biotechnology advances, 29(1): 54-66. https://doi.org/10.1016/j.biotechadv.2010.08.011
Xu R., Ma S., Wang Y., Liu L. and Li P. (2010). Screening, identification and statistic optimization of a novel exopolysaccharide producing Lactobacillus paracasei HCT. Afr. J. Microbiol. Res., 4(9), pp.783-795. ISSN 1996-0808
Yilmaz M.T., İspirli H., Taylan O., Bilgrami A.L. and Dertli E. (2022). Structural and bioactive characteristics of a dextran produced by Lactobacillus kunkeei AK1. International Journal of Biological Macromolecules, 200, 293-302. https://doi.org/10.1016/j.ijbiomac.2022.01.012
İspirli H. (2023). Physicochemical Characterization of Dextran HE29 Produced by the Leuconostoc citreum HE29 Isolated from Traditional Fermented Pickle. Molecules, 28(20):7149. https://doi.org/10.3390/molecules28207149
Sharma K., Sharma N., Handa S. and Pathania S. (2020). Purification and characterization of novel exopolysaccharides produced from Lactobacillus paraplantarum KM1 isolated from human milk and its cytotoxicity. J. Genet. Eng. Biotechnol., 18(56):1-10. https://doi.org/10.1186/s43141-020-00063-5
Abd El-Ghany K., Hamouda R.A., Mahrous H., Elhafez E.A., Ahmed F.A.H. and Hamza H.A., 2016. Description of isolated LAB producing β-glucan from Egyptian sources and evaluation of its therapeutic effect. Int. J. Pharm., 12 (8): 801-811. https://doi.org/10.3923/ijp.2016.801.811
Kralj S., van Geel-Schutten G.H., Dondorff M.M.G., Kirsanovs S., Van Der Maarel M.J.E.C. and Dijkhuizen L. (2004). Glucan synthesis in the genus Lactobacillus: isolation and characterization of glucansucrase genes, enzymes and glucan products from six different strains. Microbiology, 150(11):3681-3690. https://doi.org/10.1099/mic.0.27321-0
Cerning, J., 1990. Exocellular polysaccharides produced by lactic acid bacteria. FEMS Microbiol. Rev., 7(1-2):113-130. https://doi.org/10.1111/j.1574-6968.1990.tb04883.x
Zhao Z., Wu J., Sun Z., Fan J., Liu F., Zhao W., Liu W.H., Zhang M. and Hung W.L. (2023). Postbiotics Derived from L. paracasei ET-22 Inhibit the Formation of S. mutans Biofilms and Bioactive Substances: An Analysis. Molecules, 28(3): 1236. https://doi.org/10.3390/molecules28031236
Wasfi R., Abd El‐Rahman O.A., Zafer M.M. and Ashour H.M. (2018). Probiotic Lactobacillus sp. inhibit growth, biofilm formation and gene expression of caries‐inducing Streptococcus mutans. J. Cell. Mol. Med., 22(3):1972-1983. https://doi.org/10.1111/jcmm.13496
Singh B. and Sharma S. (2022). Vitamin B12 Production by Lactobacillus Species Isolated from Milk Products. Journal for Research in Applied Sciences and Biotechnology, 1(2):48-59. https://doi.org/10.55544/jrasb.1.2.6
Khattab A.E.N., Darwish A.M., Othman S.I., Allam A.A. and Alqhtani H.A. (2023). Anti-Inflammatory and Immunomodulatory Potency of Selenium-Enriched Probiotic Mutants in Mice with Induced Ulcerative Colitis. Biological Trace Element Research, 201(1):353-67. https://doi.org/10.1007/s12011-022-03154-1
Jung J.Y., Kwon D.H. Lee Y.J., Song Y.K., Chang M.S. and Ha S.J. (2023). The Mutant Lactobacillus plantarum GNS300 Showed Improved Exopolysaccharide Production and Antioxidant Activity. Microbiol. Biotechnol. Lett., 51(1), 18–25. https://doi.org/10.48022/mbl.2211.11006.
Mukherjee P., Pal S. and Sivaprakasam S. (2024). Optimization of D-lactic acid biosynthesis from diverse carbon sources in mutant Lactobacillus delbrueckii subsp. bulgaricus via random mutagenesis. Systems Microbiology and Biomanufacturing, 11:1-20. https://doi.org/10.1007/s43393-024-00316-1
Published
How to Cite
Issue
Section
License
Copyright (c) 2025 Journal of Contemporary Medical Sciences

This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.