Diversity and Colonization of Endophytic Actinomycetes in some Medicinal Plants: Review

Authors

  • Kholoud Alzahrani 1Department of Biology, Faculty of Sciences, King Abdulaziz University, Jeddah, Saudi Arabia; Department of Biology, University College of Umluj, University of Tabuk, Tabuk, Saudi Arabia.
  • Samyah Jastaniah Department of Biology, Faculty of Sciences, King Abdulaziz University, Jeddah, Saudi Arabia.
  • Reda Amasha Department of Biology, Faculty of Sciences, King Abdulaziz University, Jeddah, Saudi Arabia.
  • Magda M. Aly Department of Biology, Faculty of Sciences, King Abdulaziz University, Jeddah, Saudi Arabia; Botany and Microbiology Department, Faculty of Sciences, Kafrelsheikh University, Kafr el-Sheikh, Egypt.

DOI:

https://doi.org/10.22317/jcms.v8i3.1222

Keywords:

Actinobacteria, Endophytic, Plants, Streptomyces, colonization

Abstract

The diversity of culturable endophytic actinomycetes related to plants and especially medicinal plants are isolated and characterized. The increased colonization and distribution of endophytic actinomycetes in plants have been reported in many studies. Endophytic actinomycetes belong to different genera are distributed in plants species such as Streptomyces, which is the dominant genus, Micromonospora, Microbispora, Nocardiopsis, Rhodococcus and Nocardia. Moreover, there are many novel strains had been described belong to these genera. Endophytic actinomycetes seem to contribute with plant development and displaying beneficial traits that can be exploited in plant maintenance, substances supplements, protection and defense. Colonization of endophytic actinomycetes in plant tissues are largely influenced by plant species and the environmental factors surrounding the host  plants such as soil pH, water content, rainfall, soil salinity, and temperatures. Some endophytic actinomycetes may occur in low numbers and sometimes in localized positions within the plant. Thus, this review summarizes an aspect of the diversity and colonization of endophytic actinomycetes, including their mechanism of action, importance, and isolation and identification methods.

References

Abreu-Tarazi, M., Navarrete, A., Andreote, F., Almeida, C., Tsai, S. and Almeida, M. (2010). Endophytic bacteria in long-term in vitro cultivated axenic pineapple microplants revealed by PCR DGGE. World J. Microbiol. Biotechnol. Vol. 26: pp 555–560.

Anandan, R. (2016). An Introduction to Actinobacteria. In D. Dharumadurai and G. Manogaran (edt.) Basics and Biotechnological Applications, IntechOpen, pp. 3 – 37.

Ashkan, M., Aly, M. and Aldhebiani, A. (2021). Screening and Characterization of Endophytic Bacteria from Heliotropium pterocarpum Growing at Hot Spring for their Biological Impacts. Bbiosc. Biotech. Res. Comm. Vol. 14, 1.

Ashkan, M., Aly, M., Aldhebiani, A. and Al-shehri, W. (2020). Molecular Identification and Enzymatic Activities of Endophytic Bacteria of Ammannia Baccifera Grown at Hot Spring Area, Laith, Saudi Arabia. Prensa Med. Argent, S2: 010.

Brader, G., Compant, S. and Vescioetal, K. (2017). Ecology and genomic insights into plant-pathogenic and plant-nonpathogenic endophytes. Annual Review of Phytopathology, Vol. 55(1): 61–83.

Brader, G., Compant, S., Mitter, B., Trognitz, F. and Sessitsch, A. (2014). Metabolic potential of endophytic bacteria. Curr. Opin. Biotechnol. Vol. 27: 30–37.

Castanheira, N., Dourado, A., Pais, I., Semedo, J., Scotti-Campos, P., Borges, N. and Fareleira, P. (2017). Colonization and beneficial effects on annual ryegrass by mixed inoculation with plant growth promoting bacteria. Microbiol. Res. Vol. 198: 47–55.

Chaudhry, H., Nisar, N., Mehmood, S., Iqbal, M., Nazir, A., & Yasir, M. (2020). Indian Mustard Brassica juncea efficiency for the accumulation, tolerance and translocation of zinc from metal contaminated soil. Biocatalysis and agricultural biotechnology, 23, 101489.

Chaurasia, A., Meena, B., Tripathi, A., Pandey, K., Rai, A. and Singh, B. (2018). Actinomycetes: an unexplored microorganisms for plant growth promotion and biocontrol in vegetable crops. World J. Microbiol. Biotechnol., Vol. 34, 9: 132.

Chen, M., Li, F., Yan, X. and Tuo, L. (2020) Microbacterium excoecariae sp. nov., a novel endophytic actinobacterium isolated from bark of Excoecaria agallocha Linn. Int. J. Syst. Evol. Microbiol. Vol. 70(12): 6235-6239.

Chen, M., Zhang, L. and Zhang, X. (2011). Isolation and Inoculation of Endophytic Actinomycetes in Root Nodules of Elaeagnus Angustifolia. Modern Applied Science, Vol. 5, 2: 264 - 267.

Chow, Y., Rahman, S. and Ting, A. (2017). Understanding colonization and proliferation potential of endophytes and pathogen in planta via plating, polymerase chain reaction, and ergosterol assay. J. Adv. Res. Vol. 8: 13–21.

Christina, A., Christapher, V., and Bhore, S. (2013). Endophytic bacteria as a source of novel antibiotics: an overview. Pharmacogn. Rev. Vol. 7: 11–16.

Compant, S., Clément, C. and Sessitsch, A. (2010). Plant growth-promoting bacteria in the rhizo-and endosphere of plants: their role, colonization, mechanisms involved and prospects for utilization. Soil Biol. Biochem., Vol. 42: 669–678.

Gaiero, J., McCall, C., Thompson, K., Day, N., Best, A. and Dunfield, K. (2013). Inside the root microbiome: bacterial root endophytes and plant growth promotion. Am. J. Bot. Vol. 100: 1738–1750.

Gangwar, M., Dogra, S., Gupta, U. and Kharwar, R. (2014). Diversity and biopotential of endophytic actinomycetes from three medicinal plants in India. African. J. Microbiol. Res. Vol. 8: 184–191.

Gangwar, M., Kaur, N., Saini, P. and Kalia, A. (2015) The diversity, plant growth promoting and antimicrobial activities of endophytic actinomycetes isolated from Emblica officinalis Gaertn. International Journal of Advance Research. Vol. 3: 1062-1071.

Gohain, A., Gogoi, A., Debnath, R., Yadav, A., Singh, B., Gupta, V., Sharma, R. and Saikia, R. (2015). Antimicrobial biosynthetic potential and genetic diversity of endophytic actinomycetes associated with medicinal plants. FEMS. Microbiol. Lett. Vol. 362(19): 1121-1129.

Gos, F., Savi, D., Shaaban, K., Thorson, J., Aluizio, R., Possiede, Y., Rohr, J. and Glienke, C. (2017). Antibacterial activity of endophytic actinomycetes isolated from the medicinal plant Vochysia divergens (Pantanal, Brazil). Front. Microbiol., Vol. 8, 1642.

Goudjal, Y., Toumatia, O., Sabaou, N., Barakate, M., Mathieu, F. and Zitouni, A. (2013) Endophytic actinomycetes from spontaneous plants of Algerian Sahara: indole-3-acetic acid production and tomato plants growth promoting activity. World J. Microbiol. Biotechnol., Vol. 29: 1821–1829.

Guo, X., Guan, X., Liu, C., Jia, F., Li, J., Li, J., Jin, P., Li, W., Wang, X. and Xiang, W. (2016). Plantactinosporasoyae sp. nov., an endophytic actinomycete isolated from soybean root [Glycine max (L.) Merr]. Int. J. Syst. Evol. Microbiol. Vol. 66(7): 2578-2584.

Hardoim, P., Van-Overbeek, L., and Van-Elsas, J. (2008). Properties of bacterial endophytes and their proposed role in plant growth. Trends Microbiol. Vol. 16: 463–471.

Hardoim, P., Van Overbeek, L., Berg, G., Pirttilä, A., Compant, S., Campisano, A., Döring, M. and Sessitsch, A. (2015) The Hidden World within Plants: Ecological and Evolutionary Considerations for Defining Functioning of Microbial Endophytes. Microbiol. Mol. Biol. Rev. Vol. 79(3): 293-320.

Hogg, S. (2013). Essential Microbiology. (2nd ed.), Wiley-Blackwell.

Janatiningrum, I., Solihin, D., Andini, A. and Lestari, Y. (2018). Comparative study on the diversity of endophytic actinobacteria communities from Ficus deltoidea using metagenomic and culture-dependent approaches. Biodiversitas. Vol. 19(4): 1514-1520.

Jiang, Y. (2016). Isolation and Cultivation Methods of Actinobacteria. In Q. Li, X. Chen and C. Jiang (eds), Basics and Biotechnological Applications. (pp. 39 – 57), IntechOpen.

Kaewkla, O. and Franco, C. (2013) Rational approaches to improving the isolation of endophytic actinobacteria from Australian native trees. Microb. Ecol. Vol. 65: 384–393.

Kandel, S., Joubert, P. and Doty, S. (2017). “Bacterial endophyte colonization and distribution within plants,” Microorganisms, vol. 5: 1–26.

Kaur, N. (2016). Endophytic actinomycetes from Azadirachta indica A. Juss.: Characterization and antimicrobial activity. International Journal of Advanced Research, Vol. 4(6): 676-684.

Kawasaki, A., Donn, S., Ryan, P. R., Mathesius, U., Devilla, R., Jones, A., & Watt, M. (2016). Microbiome and Exudates of the Root and Rhizosphere of Brachypodium distachyon, a Model for Wheat. PloS one, 11(10), e0164533.

Khare, E., Mishra, J., & Arora, N. K. (2018). Multifaceted Interactions Between Endophytes and Plant: Developments and Prospects. Frontiers in microbiology, 9, 2732.

Kobayashi, D. and Palumbo, J. (2000). Bacterial Endophytes and Their Effects on Plants and Uses in Agriculture. C.W. Bacon and J.F. White (Eds), Marcel Dekker, New York.

Kumar, A. and Verma, J. (2018). “Does Plant-Microbe interaction confer stress tolerance in plants: a review?” Microbiological Research. Vol. 207: 41–52.

Lebeis, S. (2014). The potential for give and take in plant-microbiome relationships. Front. Plant Sci. Vol. 5, 287.

Lei, Y., Xia, Z., Luo, X. and Zhang, L. (2020). Actinokineospora pegani sp. nov., an endophytic actinomycete isolated from the surface-sterilized root of Peganum harmala L. Int. J. Syst. Evol. Microbiol., Vol. 70(7): 4358-4363.

Li, F., Liao, S., Liu, S., Jin, T. and Sun, C. (2019). Aeromicrobium endophyticum sp. nov., an endophytic actinobacterium isolated from reed (Phragmites australis). J. Microbiol. Vol. 57(9): 725-731.

Li, J., Zhao, G., Zhu, W., Huang, H., Xu, L., Zhang, S. and Li, W. (2013). Streptomyces endophyticus sp. nov., an endophytic actinomycete isolated from Artemisia annua L. Int. J. Syst. Evol. Microbiol. Vol. 63(1): 224-229.

Li, W., Zhao, J., Shi, L., Wang, J., Wang, H., Wang, X. and Xiang, W. (2018). Glycomyces rhizosphaerae sp. nov., isolated from the root and rhizosphere soil of wheat (Triticum aestivum L.). Int. J. Syst. Evol. Microbiol. Vol. 68(1): 223-227.

Li, Z., Song, W., Zhao, J., Zhuang, X., Zhao, Y., Wang, X. and Xiang, W. (2017). Nonomuraea glycinis sp. nov., a novel actinomycete isolated from the root of black soya bean [Glycine max (L.) Merr]. Int. J. Syst. Evol. Microbiol. Vol. 67(12): 5026-5031.

Liu, H., Carvalhais, L. C., Crawford, M., Singh, E., Dennis, P. G., Pieterse, C., & Schenk, P. M. (2017). Inner Plant Values: Diversity, Colonization and Benefits from Endophytic Bacteria. Frontiers in microbiology, 8, 2552.

Liu, S., Xu, M., Tuo, L., Li, X., Hu, L., Chen, L., Li, R. and Sun, C. (2016). Phycicoccus endophyticus sp. nov., an endophytic actinobacterium isolated from Bruguiera gymnorhiza. Int. J. Syst. Evol. Microbiol. Vol. 66(3): 1105-1111.

Ludwig, W., Euzéby, J., Schumann, P., Busse, H., Trujillo, M. E., Kämpfer, P., et al. (2015). “Road map of the phylum Actinobacteria,” in Bergey’s Manual of Systematics of Archaea and Bacteria, eds W. B. Whitman, F. Rainey, P. Kämpfer, M. Trujillo, J. Chun, P. DeVos, et al. (Hoboken, NJ: Wiley).

Matsumoto, A. and Takahashi, Y. (2017). Endophytic actinomycetes: promising source of novel bioactive compounds. The Journal of Antibiotics. Vol. 70: 514–519.

Mengistu, A. "Endophytes: Colonization, Behaviour, and Their Role in Defense Mechanism", International Journal of Microbiology, vol. 2020, Article ID 6927219, 8 pages.

Momin, M., Passari, A.,Singh, B. and Tripathi, S. (2019). Isolation and Morphological Identification of Endophytic Actinomycetes from Medicinal Plants of Mizoram, Northeast, India. Medicinal Plants of India: Conservation and sustainable use, 343-351.

Musa, Z., Ma, J., Egamberdieva, D., Mohamad, O., Abaydulla, G., Liu, Y., Li, W. and Li, L. (2020). Diversity and Antimicrobial Potential of Cultivable Endophytic Actinobacteria Associated with the Medicinal Plant Thymus roseus. Frontiers in Microbiology. Vol. 11, 191.

Nalini, M. and Prakash, H. (2017). Diversity and bioprospecting of actinomycete endophytes from the medicinal plants. Letters in Applied Microbiology,Vol. 64: 261-270.

Ngaemthao, W., Pujchakarn, T., Chunhametha, S. and Suriyachadkun, C. (2017). Verrucosispora endophytica sp. nov., isolated from the root of wild orchid (Grosourdya appendiculata (Blume) Rchb. f.). Int. J. Syst. Evol. Microbiol., 67(12): 5114-5119.

Olivares, F., James, E., Baldani, J. and Döbereiner, J. (1997). Infection of mottled stripe disease-susceptible and resistant sugar cane varieties by the endophytic diazotroph Herbaspirillum. New Phytol., Vol. 135: 723–737.

Passari, A., Chandra, P., Zothanpuia, Mishra, V., Leo, V., Gupta, V., Kumar, B. and Singh, B. (2016). Detection of biosynthetic gene and phytohormone production by endophytic actinobacteria associated with Solanum lycopersicum and their plant-growth-promoting effect. Res. Microbiol. Vol. 167: 692–705.

Patle, P., Navnage, N. and Ramteke, P. (2018). Endophytes in plant system: roles in growth promotion, mechanism and their potentiality in achieving agriculture sustainability. International Journal of Chemical Studies. vol. 6: 270–274.

Peng C, Zhuang X, Gao C, Wang Z, Zhao J, Huang SX, Liu C, Xiang W. (2021). Streptomyces typhae sp. nov., a novel endophytic actinomycete with antifungal activity isolated the root of cattail (Typha angustifolia L.). Antonie Van Leeuwenhoek, 114(6):823-833.

Phongsopitanuna, W., Sripreechasakc, P., Rueangsawang, K., Panyawut, R., Pittayakhajonwut, P. and Tanasupawat, S. (2020). Diversity and antimicrobial activity of culturable endophytic actinobacteria associated with Acanthaceae plants. Science Asia, Vol. 46: 288-296.

Phuakjaiphaeo, C., and Kunasakdakul, K. (2015). Isolation and screening for inhibitory activity on Alternaria brassicicola of endophytic actinomycetes from Centella asiatica (L.) Urban. J. Agri. Technol. Vol. 11: 903–912.

Plett, J. and F. Martin, M. (2018). Know your enemy, embrace your friend: using omics to understand how plants respond differently to pathogenic and mutualistic microorganisms differently to pathogenic and mutualistic microorganisms. The Plant Journal, vol. 93(4): 729–746.

Prakash, O., Nimonkar, Y., Munot, H., Sharma, A., Vemuluri, V., Chavadar, M. and Shouche, Y. (2014). Description of Micrococcus aloeverae sp. nov., an endophytic actinobacterium isolated from Aloe vera. Int. J. Syst. Evol. Microbiol. Vol. 64(10): 3427-3433.

Priya, M. (2012). Endophytic Actinomycetes from Indian Medicinal Plants as Antagonists to Some Phytopathogenic Fungi. Vol. 1, 259.

Qin, S., Li, J., Chen, H., Zhao, G., Zhu, W., Jiang, C. (2009). Isolation, diversity, and antimicrobial activity of rare actinobacteria from medicinal plants of tropical rain forests in Xishuangbanna, China. Appl. Environ. Microbiol. Vol. 75: 6176-6186.

Rahayu, S., Fitri, L. and Ismail, Y. (2019). Endophytic actinobacteria isolated from ginger (Zingiber officinale) and its potential as a pancreatic lipase inhibitor and its toxicity. Biodiversitas Vol. 20(5): 1312-1317.

Rangjaroen, C., Sungthong, R., Rerkasem, B., Teaumroong, N., Noisangiam, R. and Lumyong, S. (2017). Untapped Endophytic Colonization and Plant Growth-Promoting Potential of the Genus Novosphingobium to Optimize Rice Cultivation. Microbes Environ. Vol. 32: 84–87.

Ranjan, R. and Jadeja, V. (2017). Isolation, characterization and chromatography-based purification of antibacterial compound isolated from rare endophytic actinomycetes Micrococcus yunnanensis. J. Pharm Anal. Vol. 7(5): 343-347.

Rao, H., Rakshith, D. and Satish, S. (2015). Antimicrobial properties of endophytic actinomycetes isolated from Combretum latifolium Blume, a medicinal shrub from Western Ghats of India. Frontiers in Biology. Vol. 10(6): 528–536.

Román-Ponce, B., Wang, D., Vásquez-Murrieta, S., Chen, W., Santos, P., Sui, X. and Wang, E. (2016). Kocuria arsenatis sp. nov., an arsenic-resistant endophytic actinobacterium associated with Prosopis laegivata grown on high-arsenic-polluted mine tailing. Int. J. Syst. Evol. Microbiol. Vol. 66(2): 1027-1033.

Sadrati, N., Daoud, H., Zerroug, A., Dahamna, S. and Bouharati, S. (2013). Screening of antimicrobial and antioxidant secondary metabolites from endophytic fungi isolated from wheat (Triticum durum). Journal of Plant Protection Research. Vol. 53(2): 128-136.

Saini, P., Gangwar, M., Kalia, A., Singh, N. and Narang, D. (2016). Isolation of endophytic actinomycetes from Syzygiumcumini and their antimicrobial activity against human pathogens. J. App. Nat. Sci. Vol. 8: 416–422.

Sakdapetsiri, C., Ngaemthao, W., Suriyachadkun, C., Duangmal, K. and Kitpreechavanich, V. (2018). Actinomycetospora endophytica sp. nov., isolated from wild orchid (Podochilus microphyllus Lindl.) in Thailand. Int. J. Syst. Evol. Microbiol. Vol. 68(9): 3017-3021.

Salam, P., Pandey, V., Shrestha, S. and Anal, A. (2017). The need for the nexus approach, in Water-Energy-Food Nexus: Principles and Practices. Washington, DC: John Wiley and Sons, Inc.,1–10.

Santi, C., Bogusz, D. and Franche, C. (2013). Biological nitrogen fixation in non-legume plants. Ann. Bot. Vol. 111: 743–767.

Seipke, R., Kaltenpoth, M. and Hutchings, M. (2012) Streptomyces as symbionts: an emerging and widespread theme. FEMS Microbiol. Rev. Vol. 36: 862–876.

Shan, W., Zhou, Y., Liu, H. and Xiaomin, Y. (2018). Endophytic Actinomycetes from Tea Plants (Camellia sinensis): Isolation, Abundance, Antimicrobial, and Plant-Growth-Promoting Activities. BioMed Research International, vol. 2018, Article ID 1470305, 12 pages.

Sharma, M., Dangi, P. and Choudhary, M. (2014). Actinomycetes: Source, Identification, and Their Applications. Int. J. Curr. Microbiol. App. Sci., Vol. 3(2): 801-832.

Singh, R. and Dubey, A. (2018). Diversity and Applications of Endophytic Actinobacteria of Plants in Special and Other Ecological Niches. Frontiers in Microbiology. Vol. 9, 1767.

Singh, S. and Gaur, R. (2016). Evaluation of antagonistic and plant growth promoting activities of chitinolytic endophytic actinomycetes associated with medicinal plants against Sclerotium rolfsii in chickpea. J. Appl. Microbiol. Vol. 121: 506–518.

Stepniewska, Z. and Kuzniar, A. (2013). Endophytic microorganisms-promising applications in bioremediation of greenhouse gases. Appl. Microbiol. Biotechnol. Vol. 97: 9589–9596.

Straub, D., Rothballer, M., Hartmann, A. and Ludewig, U. (2013). The genome of the endophytic bacterium H. frisingense GSF30(T) identifies diverse strategies in the Herbaspirillum genus to interact with plants. Front. Microbiol., Vol. 4(168).

Strobel, G. and Daisy, B. (2003). Bioprospecting for microbial endophytes and their natural products. Microbiol. Mol. Biol. Rev. Vol. 67: 491–502.

Suman, A., Yadav, A. and Verma, P. (2016). Endophytic Microbes in Crops: Diversity and Beneficial Impact for Sustainable Agriculture. In: Singh D., Singh H., Prabha R. (eds) Microbial Inoculants in Sustainable Agricultural Productivity. Springer, New Delhi.

Tiwari, K. (2015). The future products: endophytic fungal metabolites. J. Biodivers. Biopros. Dev., Vol. 2(145).

Tuo, L., Li, J., Liu, S., Liu, Y., Hu, L., Chen, L., Jiang, M. and Sun, C. (2016) Microlunatus endophyticus sp. nov., an endophytic actinobacterium isolated from bark of Bruguiera sexangula. Int. J. Syst. Evol. Microbiol. Vol. 66(1): 481-486.

Van Der Meij, A., Worsley, S., Hutchings, M. and Van Wezel, G. (2017). Chemical ecology of antibiotic production by actinomycetes. FEMS Microbiol. Rev., Vol. 41: 392–416.

Vorholt, J. (2012). Microbial life in the phyllosphere. Nat. Rev. Microbiol., Vol. 10: 828–840.

Vu, T., Nguyen, Q., Dinh, T., Quach, N., Khieu, T., Hoang, H., Chu-Ky, S., Vu, T., Chu, H., Lee, J., Kang, H., Li, W. and Phi, Q. (2020). Endophytic actinomycetes associated with Cinnamomum cassia Presl in Hoa Binh province, Vietnam: Distribution, antimicrobial activity and, genetic features. J. Gen. Appl. Microbiol. Vol. 66(1): 24-31.

Wang, T., Li, f., Lu, Q., Wu, G., Jiang, Z., Liu, S., Habden, X., Razumova, E., Osterman, I., Sergiev, P., Dontsova, O., Hu, X., You, X. and Sun, C. (2021). Studies on diversity, novelty, antimicrobial activity, and new antibiotics of cultivable endophytic actinobacteria isolated from psammophytes collected in Taklamakan Desert. Journal of Pharmaceutical Analysis. Vol.11 (2): 241-250.

Wang, H., Li, L., Zhang, Y., Hozzein, W., Zhou, X., Liu, W., Duan, Y. and Li, W. (2015a). Arthrobacter endophyticus sp. nov., an endophytic actinobacterium isolated from root of Salsola affinis C. A. Mey. Int. J. Syst. Evol. Microbiol. Vol. 65(7): 2154-2160.

Wang, H., Li, Q., Xiao, M., Zhang, Y., Zhou, X., Narsing, R., Duan, Y. and Li, W. (2017). Streptomyces capparidis sp. nov., a novel endophytic actinobacterium isolated from fruits of Capparis spinosa L. Int. J. Syst. Evol. Microbiol. Vol. 67(1): 133-137.

Wang, H., Li, X., Gao, R., Xie, Y., Xiao, M., Li, Q. and Li W. (2020). Amycolatopsis anabasis sp. nov., a novel endophytic actinobacterium isolated from roots of Anabasis elatior. Int. J. Syst. Evol. Microbiol. Vol. 70(5): 3391-3398.

Wang, H., Zhang, Y., Chen, J., Guo, J., Li, L., Hozzein, W., Zhang, Y., Wadaan, M. and Li, W. (2015b). Frigoribacterium endophyticum sp. nov., an endophytic actinobacterium isolated from the root of Anabasis elatior (C. A. Mey.) Schischk. Int. J. Syst. Evol. Microbiol. Vol. 65(4): 1207-1212.

Xing, H., Liu, C., Zhang, Y., Zhao, J., Li, C., Liu, H., Li, L., Wang, X. and Xiang, W. (2015). Plantactinospora veratri sp. nov., an actinomycete isolated from black false hellebore root (Veratrum nigrum L.). Int. J. Syst. Evol. Microbiol. Vol. 65(6): 1799-1804.

Yan, X., Chen, M., Yang, C., An, M., Li, H., Shi, H. and Tuo, L. (2020). Nakamurella flava sp. nov., a novel endophytic actinobacterium isolated from Mentha haplocalyx Briq. Int. J. Syst. Evol. Microbiol., Vol 70(2): 835-840.

Zhang, X., Ren, K., Du, J., Liu, H. and Zhang, L. (2014). Glycomyces artemisiae sp. nov., an endophytic actinomycete isolated from the roots of Artemisia argyi. Int. J. Syst. Evol. Microbiol. Vol. 64(10): 3492-3495.

Zhang, Y., Wang, H., Alkhalifah, D., Xiao, M., Zhou, X., Liu, Y., Hozzein, W. and Li, W. (2018). Glycomyces anabasis sp. nov., a novel endophytic actinobacterium isolated from roots of Anabasis aphylla L. Int. J. Syst. Evol. Microbiol. Vol. 68(4): 1285-1290.

Downloads

Published

2022-06-26

How to Cite

Alzahrani, K. ., Jastaniah, S. ., Amasha, R. ., & M. Aly, M. . (2022). Diversity and Colonization of Endophytic Actinomycetes in some Medicinal Plants: Review. Journal of Contemporary Medical Sciences, 8(3). https://doi.org/10.22317/jcms.v8i3.1222