Ruminant gut microbiota: importance, development, and alternative therapeutics for dysbiosis


  • Nahlah Albakri Department of Biology, College of Science, King Abdullaziz University, Jeddah, Saudi Arabia.
  • Reda Amasha Department of Biology, College of Science, King Abdullaziz University, Jeddah, Saudi Arabia.
  • Magda M. Aly Department of Biology, College of Science, King Abdullaziz University, Jeddah, Saudi Arabia; Botany and Microbiology Department, Faculty of Science, Kafrelsheikh University, Egypt.



Gastrointestinal Microbiome, Alternative Therapeutics, Dysbiosis


The microbiome is a population of microbes that colonized in mammalian gut. During the first few years of life, the gut microbiome undergoes alteration and is very diverse in adulthood, depends upon various of circumstances. Gut microbes, particularly gut flora in ruminants, are receiving more and more attention. Intestinal microbes, particularly ruminant microorganisms, have attracted an increasing amount of attention as high-throughput sequencing technology has improved and costs have decreased, whether in the fundamental research or application fields. The ruminant microbiome changes in conjunction with its host and it is influenced by inter-microbial interactions, environmental exposures, and host properties. However, any organism's core functional microbiome is much more conventional. Unfortunately, the fragile growth ratio of the microbial culture is susceptible to incursions under illness circumstances, which may affect the abundance of various microbial species, resulting to dysbiosis. As a result, the purpose of this review is to provide a broad summary of the relevance of ruminant gut microorganisms, as well as to investigate variables that influence the microbiota and alternative therapeutics such as probiotics, prebiotics, fecal transplantation, and rumen transfiguration, all of which have been shown to be effective in addressing dysbiosis.


Chai, L., Dong, Z., Chen, A., & Wang, H. (2018). Changes in intestinal microbiota of Bufogargarizans and its association with body weight during metamorphosis. Archives of microbiology, 200(7), 1087-1099.‏

Meng, X., Zhang, G., Cao, H., Yu, D., Fang, X., de Vos, W. M., & Wu, H. (2020). Gut dysbacteriosis and intestinal disease: mechanism and treatment. Journal of applied microbiology, 129(4), 787-805.‏

Sekirov, I., Tam, N. M., Jogova, M., Robertson, M. L., Li, Y., Lupp, C., & Finlay, B. B. (2008). Antibiotic-induced perturbations of the intestinal microbiota alter host susceptibility to enteric infection. Infection andimmunity, 76(10), 4726-4736.‏

Sekirov, I., Russell, S. L., Antunes, L. C. M., & Finlay, B. B. (2010). Gut microbiota in health and disease. Physiological reviews.‏

Deusch, S., Tilocca, B., Camarinha-Silva, A., & Seifert, J. (2015). News in livestock research—use of Omics-technologies to study the microbiota in the gastrointestinal tract of farm animals. Computational and structural biotechnology journal, 13, 55-63.‏

Ming, W., & Ding, L. (2021). A brief history of ruminant gut microbiological research. Environment, Resource and Ecology Journal, 5(2), 23-28.‏

Martinez, K. B., Leone, V., & Chang, E. B. (2017). Microbial metabolites in health and disease: Navigating the unknown in search of function. Journal of Biological Chemistry, 292(21), 8553-8559.‏

Desselberger, U. (2018). The mammalian intestinal microbiome: composition, interaction with the immune system, significance for vaccine efficacy, and potential for disease therapy. Pathogens, 7(3), 57.

Matijašić, M., Meštrović, T., ČipčićPaljetak, H., Perić, M., Barešić, A., &Verbanac, D. (2020). Gut microbiota beyond bacteria—Mycobiome, virome, archaeome, and eukaryotic parasites in IBD. International journal of molecular sciences, 21(8), 2668.‏

Membrive, C.M.B. Anatomy and Physiology of the Rumen. In Rumenology; Millen, D.D., Arrigoni, M.B., Pacheco, R.D.L., Eds.;

Springer: Basel, Switzerland, 2016; pp. 1–38.

Petri, R. M., Neubauer, V., Humer, E., Kröger, I., Reisinger, N., &Zebeli, Q. (2020). Feed additives differentially impact the epimural microbiota and host epithelial gene expression of the bovine rumen fed diets rich in concentrates. Frontiers in microbiology, 11, 119.‏

O'Hara, E., Neves, A. L., Song, Y., & Guan, L. L. (2020). The role of the gut microbiome in cattle production and health: driver or passenger?. Annual review of animal biosciences, 8, 199-220.

Cammack, K. M., Austin, K. J., Lamberson, W. R., Conant, G. C., & Cunningham, H. C. (2018). RUMINNAT NUTRITION SYMPOSIUM: Tiny but mighty: the role of the rumen microbes in livestock production. Journal of animal science, 96(2), 752-770.‏

Myer, P. R., Freetly, H. C., Wells, J. E., Smith, T. P. L., & Kuehn, L. A. (2017). Analysis of the gut bacterial communities in beef cattle and their association with feed intake, growth, and efficiency. Journal of animal science, 95(7), 3215-3224.‏

Khalil, A., Batool, A., &Arif, S. (2022). Healthy Cattle Microbiome and Dysbiosis in Diseased Phenotypes. Ruminants, 2(1), 134-156.

Mao, S., Zhang, M., Liu, J., & Zhu, W. (2015). Characterising the bacterial microbiota across the gastrointestinal tracts of dairy cattle: membership and potential function. Scientific reports, 5(1), 1-14.

Harfoot, C. G. (1981). Anatomy, physiology and microbiology of the ruminant digestive tract. Lipid metabolism in ruminant animals, 1-19.‏

Myer, P. R., Wells, J. E., Smith, T. P., Kuehn, L. A., &Freetly, H. C. (2015). Microbial community profiles of the colon from steers differing in feed efficiency. Springerplus, 4(1), 1-13.‏

Durso, L. M., Miller, D. N., Schmidt, T. B., & Callaway, T. (2017). Tracking bacteria through the entire gastrointestinal tract of a beef steer.‏

Van Nevel, C. J., &Demeyer, D. I. (1996). Control of rumen methanogenesis. Environmental Monitoring and assessment, 42(1), 73-97.‏

Walker, W. F., &Liem, K. F. (1994). Functional anatomy of the vertebratesan evolutionary perspective.‏

Bergman, E. N. (1990). Energy contributions of volatile fatty acids from the gastrointestinal tract in various species. Physiological reviews, 70(2), 567-590.‏

Cheng, K. J., Fay, J. P., Howarth, R. E., &Costerton, J. W. (1980). Sequence of events in the digestion of fresh legume leaves by rumen bacteria. Applied and Environmental Microbiology, 40(3), 613-625.‏

McAllister, T. A., Bae, H. D., Jones, G. A., & Cheng, K. J. (1994). Microbial attachment and feed digestion in the rumen. Journal of animal science, 72(11), 3004-3018.‏

Henderson, G., Cox, F., Ganesh, S., Jonker, A., Young, W., & Janssen, P. H. (2015). Rumen microbial community composition varies with diet and host, but a core microbiome is found across a wide geographical range. Scientific reports, 5(1), 1-15.‏

Seshadri, R., Leahy, S. C., Attwood, G. T., Teh, K. H., Lambie, S. C., Cookson, A. L., ... & Kelly, W. J. (2018). Cultivation and sequencing of rumen microbiome members from the Hungate1000 Collection. Nature biotechnology, 36(4), 359-367.‏

Bannink, A., Kogut, J., Dijkstra, J., France, J., Kebreab, E., Van Vuuren, A. M., &Tamminga, S. (2006). Estimation of the stoichiometry of volatile fatty acid production in the rumen of lactating cows. Journal of Theoretical Biology, 238(1), 36-51.‏

Van Soest, P. J. (1996). Allometry and ecology of feeding behavior and digestive capacity in herbivores: a review. Zoo Biology: Published in affiliation with the American Zoo and Aquarium Association, 15(5), 455-479.

Tedeschi, L. O., Fox, D. G., & Russell, J. B. (2000, October). Accounting for ruminal deficiencies of nitrogen and branched-chain amino acids in the structure of the Cornell net carbohydrate and protein system. In Proceedings of Cornell Nutrition Conference for Feed Manufacturers (pp. 224-238). New York: Cornell University.‏

Bach, A., Calsamiglia, S., & Stern, M. D. (2005). Nitrogen metabolism in the rumen. Journal of dairy science, 88, E9-E21.‏

Lanzas, C., Broderick, G. A., & Fox, D. G. (2008). Improved feed protein fractionation schemes for formulating rations with the Cornell Net Carbohydrate and Protein System. Journal of Dairy Science, 91(12), 4881-4891.‏

Tamminga, S. (1979). Protein degradation in the forestomachs of ruminants. Journal of Animal Science, 49(6), 1615-1630.‏

Cheng, L., Cantalapiedra-Hijar, G., Meale, S. J., Rugoho, I., Jonker, A., Khan, M. A., ... & Dewhurst, R. J. (2021). Markers and proxies to monitor ruminal function and feed efficiency in young ruminants. Animal, 15(10), 100337.‏

Sander, E. G., Warner, R. G., Harrison, H. N., &Loosli, J. K. (1959). The stimulatory effect of sodium butyrate and sodium propionate on the development of rumen mucosa in the young calf. Journal of dairy science, 42(9), 1600-1605.‏

Suárez, B. J., Van Reenen, C. G., Beldman, G., Van Delen, J., Dijkstra, J., &Gerrits, W. J. J. (2006). Effects of supplementing concentrates differing in carbohydrate composition in veal calf diets: I. Animal performance and rumen fermentation characteristics. Journal of dairy science, 89(11), 4365-4375.

Tamate, H., McGilliard, A. D., Jacobson, N. L., & Getty, R. (1962). Effect of various dietaries on the anatomical development of the stomach in the calf. Journal of dairy science, 45(3), 408-420.‏

Stobo, I. J. F., Roy, J. H. B., & Gaston, H. J. (1966). Rumen development in the calf: 1. The effect of diets containing different proportions of concentrates to hay on rumen development. British Journal of Nutrition, 20(2), 171-188.‏

Hodgson, J. (1971). The development of solid food intake in calves 4. The effect of the addition of material to the rumen, or its removal from the rumen, on voluntary food intake. Animal Science, 13(4), 581-592.‏

Sahoo, A., Kamra, D. N., & Pathak, N. N. (2005). Pre-and postweaning attributes in faunated and ciliate-free calves fed calf starter with or without fish meal. Journal of dairy science, 88(6), 2027-2036.‏

Kmet, V., Flint, H. J., & Wallace, R. J. (1993). Probiotics and manipulation of rumen development and function. Archives of Animal Nutrition, 44(1), 1-10.‏

Li, R. W., Connor, E. E., Li, C., Baldwin, VI, R. L., & Sparks, M. E. (2012). Characterization of the rumen microbiota of pre‐ruminant calves using metagenomic tools. Environmental microbiology, 14(1), 129-139.‏

Guzman, C. E., Bereza-Malcolm, L. T., De Groef, B., & Franks, A. E. (2015). Presence of selected methanogens, fibrolytic bacteria, and proteobacteria in the gastrointestinal tract of neonatal dairy calves from birth to 72 hours. PloS one, 10(7), e0133048.‏

Malmuthuge, N., Griebel, P. J., & Guan, L. L. (2015). The gut microbiome and its potential role in the development and function of newborn calf gastrointestinal tract. Frontiers in veterinary science, 2, 36.‏

Jami, E., Israel, A., Kotser, A., & Mizrahi, I. (2013). Exploring the bovine rumen bacterial community from birth to adulthood. The ISME journal, 7(6), 1069-1079.‏

Wang, Z., Elekwachi, C., Jiao, J., Wang, M., Tang, S., Zhou, C., ... & Forster, R. J. (2017). Changes in metabolically active bacterial community during rumen development, and their alteration by rhubarb root powder revealed by 16S rRNA amplicon sequencing. Frontiers in microbiology, 8, 159.‏

Meale, S. J., Li, S., Azevedo, P., Derakhshani, H., Plaizier, J. C., Khafipour, E., & Steele, M. A. (2016). Development of ruminal and fecal microbiomes are affected by weaning but not weaning strategy in dairy calves. Frontiers in microbiology, 7, 582.‏

Meale, S. J., Morgavi, D. P., Cassar-Malek, I., Andueza, D., Ortigues-Marty, I., Robins, R. J., ... &Cantalapiedra-Hijar, G. (2017). Exploration of biological markers of feed efficiency in young bulls. Journal of agricultural and food chemistry, 65(45), 9817-9827.‏

Rey, M., Enjalbert, F., Combes, S., Cauquil, L., Bouchez, O., &Monteils, V. (2014). Establishment of ruminal bacterial community in dairy calves from birth to weaning is sequential. Journal of applied microbiology, 116(2), 245-257.‏

Furman, O., Shenhav, L., Sasson, G., Kokou, F., Honig, H., Jacoby, S., ... & Mizrahi, I. (2020). Stochasticity constrained by deterministic effects of diet and age drive rumen microbiome assembly dynamics. Nature communications, 11(1), 1-13.‏

Roehe, R., Dewhurst, R. J., Duthie, C. A., Rooke, J. A., McKain, N., Ross, D. W., ... & Wallace, R. J. (2016). Bovine host genetic variation influences rumen microbial methane production with best selection criterion for low methane emitting and efficiently feed converting hosts based on metagenomic gene abundance. PLoS genetics, 12(2), e1005846.‏

Wallace, R. J., Sasson, G., Garnsworthy, P. C., Tapio, I., Gregson, E., Bani, P., ... & Mizrahi, I. (2019). A heritable subset of the core rumen microbiome dictates dairy cow productivity and emissions. Science advances, 5(7), eaav8391.‏

Bevans, D. W., Beauchemin, K. A., Schwartzkopf-Genswein, K. S., McKinnon, J. J., & McAllister, T. A. (2005). Effect of rapid or gradual grain adaptation on subacute acidosis and feed intake by feedlot cattle. Journal of Animal Science, 83(5), 1116-1132.‏

Auffret, M. D., Dewhurst, R. J., Duthie, C. A., Rooke, J. A., John Wallace, R., Freeman, T. C., ... &Roehe, R. (2017). The rumen microbiome as a reservoir of antimicrobial resistance and pathogenicity genes is directly affected by diet in beef cattle. Microbiome, 5(1), 1-11.‏

Liu, K., Xu, Q., Wang, L., Wang, J., Guo, W., & Zhou, M. (2017). The impact of diet on the composition and relative abundance of rumen microbes in goat. Asian-Australasian Journal of Animal Sciences, 30(4), 531.‏

Pandit, R. J., Hinsu, A. T., Patel, S. H., Jakhesara, S. J., Koringa, P. G., Bruno, F., ... & Joshi, C. G. (2018). Microbiota composition, gene pool and its expression in Gir cattle (Bosindicus) rumen under different forage diets using metagenomic and metatranscriptomic approaches. Systematic and applied microbiology, 41(4), 374-385.‏

Zhao, S., Zhao, J., Bu, D., Sun, P., Wang, J., & Dong, Z. (2014). Metabolomics analysis reveals large effect of roughage types on rumen microbial metabolic profile in dairy cows. Letters in applied microbiology, 59(1), 79-85.‏

Ribeiro, G. O., Oss, D. B., He, Z., Gruninger, R. J., Elekwachi, C., Forster, R. J., ... & McAllister, T. A. (2017). Repeated inoculation of cattle rumen with bison rumen contents alters the rumen microbiome and improves nitrogen digestibility in cattle. Scientific Reports, 7(1), 1-16.‏

Clavel, T., Gomes‐Neto, J. C., Lagkouvardos, I., & Ramer‐Tait, A. E. (2017). Deciphering interactions between the gut microbiota and the immune system via microbial cultivation and minimal microbiomes. Immunological reviews, 279(1), 8-22

Liu, K., Zhang, Y., Yu, Z., Xu, Q., Zheng, N., Zhao, S., ... & Wang, J. (2021). Ruminal microbiota–host interaction and its effect on nutrient metabolism. Animal Nutrition, 7(1), 49-55.‏

Firkins, J. L., & Yu, Z. (2015). Ruminant nutrition symposium: how to use data on the rumen microbiome to improve our understanding of ruminant nutrition. Journal of animal science, 93(4), 1450-1470.‏

van den Broek, M. F., De Boeck, I., Kiekens, F., Boudewyns, A., Vanderveken, O. M., &Lebeer, S. (2019). Translating recent microbiome insights in otitis media into probiotic strategies. Clinical microbiology reviews, 32(4), e00010-18.‏

Karstrup, C. C., Klitgaard, K., Jensen, T. K., Agerholm, J. S., & Pedersen, H. G. (2017). Presence of bacteria in the endometrium and placentomes of pregnant cows. Theriogenology, 99, 41-47.‏

Moore, S. G., Ericsson, A. C., Poock, S. E., Melendez, P., & Lucy, M. C. (2017). Hot topic: 16S rRNA gene sequencing reveals the microbiome of the virgin and pregnant bovine uterus. Journal of dairy science, 100(6), 4953-4960

Webb, C. B. (2019). Fecal Microbiota Transplantation: from theory to practice

Hill, C., Guarner, F., Reid, G., Gibson, G. R., Merenstein, D. J., Pot, B., ... & Sanders, M. E. (2014). The International Scientific Association for Probiotics and Prebiotics consensus statement on the scope and appropriate use of the term probiotic. Nature reviews Gastroenterology & hepatology, 11(8), 506-514.‏

Krishnan, D., Al-Harbi, H., Gibson, J., Olchowy, T., &Alawneh, J. (2020). On the use of probiotics to improve dairy cattle health and productivity. Microbiology Australia, 41(2), 86-90.‏

Wan, M. L. Y., Forsythe, S. J., & El-Nezami, H. (2019). Probiotics interaction with foodborne pathogens: a potential alternative to antibiotics and future challenges. Critical reviews in food science and nutrition, 59(20), 3320-3333.‏

Gao, J., Li, Y., Wan, Y., Hu, T., Liu, L., Yang, S., ... & Cao, H. (2019). A novel postbiotic from Lactobacillus rhamnosus GG with a beneficial effect on intestinal barrier function. Frontiers in microbiology, 10, 477.‏

Anas, M., Ahmed, K., &Mebrouk, K. (2014). Study of the antimicrobial and probiotic Effect of Lactobacillus Plantarum isolated from raw goat’s milk from the region of Western Algeria. World Applied Sciences Journal, 32(7), 1304-1310.‏

Sanders, M. E., Merenstein, D. J., Reid, G., Gibson, G. R., &Rastall, R. A. (2019). Probiotics and prebiotics in intestinal health and disease: from biology to the clinic. Nature reviews Gastroenterology & hepatology, 16(10), 605-616.‏

Suryadi, U., Nugraheni, Y. R., Prasetyo, A. F., &Awaludin, A. (2019). Evaluation of effects of a novel probiotic feed supplement on the quality of broiler meat. Veterinary World, 12(11), 1775.‏

Goto, H., Qadis, A. Q., Kim, Y. H., Ikuta, K., Ichijo, T., & Sato, S. (2016). Effects of a bacterial probiotic on ruminal pH and volatile fatty acids during subacute ruminal acidosis (SARA) in cattle. Journal of Veterinary Medical Science, 16-0211.‏

Mohammed, R., Vyas, D., Yang, W. Z., &Beauchemin, K. A. (2017). Changes in the relative population size of selected ruminal bacteria following an induced episode of acidosis in beef heifers receiving viable and non‐viable active dried yeast. Journal of applied microbiology, 122(6), 1483-1496.‏

Ogunade, I., Pech-Cervantes, A., &Schweickart, H. (2019). Metatranscriptomic analysis of sub-acute ruminal acidosis in beef cattle. Animals, 9(5), 232.‏

Rainard, P., &Foucras, G. (2018). A critical appraisal of probiotics for mastitis control. Frontiers in veterinary science, 251.‏

Angelopoulou, A., Warda, A. K., Hill, C., & Ross, R. P. (2019). Non-antibiotic microbial solutions for bovine mastitis–live biotherapeutics, bacteriophage, and phage lysins. Critical reviews in microbiology, 45(5-6), 564-580.‏

Frizzo, L. S., Signorini, M. L., &Rosmini, M. R. (2018). Probiotics and prebiotics for the health of cattle. In Probiotics and prebiotics in animal health and food safety (pp. 155-174). Springer, Cham.‏

Smulski, S., Turlewicz-Podbielska, H., Wylandowska, A., &Włodarek, J. (2020). Non-antibiotic possibilities in prevention and treatment of calf diarrhoea. Journal of Veterinary Research, 64(1), 119-126

Singh, A., Kerketta, S., Yogi, R., Kumar, A., & Ojha, L. (2017). Prebiotics: the new feed supplement for dairy calf. Int J Livest Res, 7, 1-17.‏

Grispoldi, L., Bertero, F., Franceschini, S., Mastrosimone, F., Sechi, P., Iulietto, M. F., ... & Cenci-Goga, B. T. (2017). Prevalence and characterisation of shigatoxigenic Escherichia coli isolated from beef cattle fed with prebiotics. Italian journal of food safety, 6(4).‏

Bojanova, D. P., &Bordenstein, S. R. (2016). Fecal transplants: what is being transferred?. PLoS biology, 14(7), e1002503.‏

Zhang, F., Luo, W., Shi, Y., Fan, Z., & Ji, G. (2012). Should we standardize the 1,700-year-old fecal microbiota transplantation?. The American journal of gastroenterology, 107(11), 1755-author.‏

EISEMAN, B., Silen, W., Bascom, G. S., &Kauvar, A. J. (1958). Fecal enema as an adjunct in the treatment of pseudomembranous enterocolitis. Surgery, 44(5), 854-859.‏

Hota, S. S., Surangiwala, S., Paterson, A. S., Coburn, B., &Poutanen, S. M. (2018). Regional variability in fecal microbiota transplantation practices: a survey of the Southern Ontario Fecal Microbiota Transplantation Movement. Canadian Medical Association Open Access Journal, 6(2), E184-E190.‏

Borody, T., Nowak, A., Torres, M., Campbell, J., Finlayson, S., & Leis, S. (2012). Bacteriotherapy in Chronic Fatigue Syndrome (CFS): A Retrospective Review: 1481. Official journal of the American College of Gastroenterology| ACG, 107, S591-S592.‏

Vrieze, A., Van Nood, E., Holleman, F., Salojarvi, J., Kootte, R. S., Bartelsman, J. F., ... &Nieuwdorp, M. (2012). Transfer of intestinal microbiota from lean donors increases insulin sensitivity in individuals with metabolic syndrome. Gastroenterol 143 (4): 913–916. e7.‏

Allegretti, J. R., Kassam, Z., Hurtado, J., Marchesi, J. R., Mullish, B. H., Chiang, A., ... & Cummings, B. P. (2021). Impact of fecal microbiota transplantation with capsules on the prevention of metabolic syndrome among patients with obesity. Hormones, 20(1), 209-211.‏

Mandal, R. S. K., Joshi, V., Balamurugan, B., Gautam, D., Chethan, G. E., &Lekshman, A. (2017). Rumen transfaunation an effective method for treating simple indigestion in ruminants. North-East Veterinarian, 17(1), 31-33.‏

Borody, T. J., Warren, E. F., Leis, S. M., Surace, R., Ashman, O., &Siarakas, S. (2004). Bacteriotherapy using fecal flora: toying with human motions. Journal of clinical gastroenterology, 38(6), 475-483.‏

Brag, S., & Hansen, H. J. (1994). Treatment of ruminal indigestion according to popular belief in Sweden. Revue scientifique et technique (International Office of Epizootics), 13(2), 529-535.‏

Allegretti, J. R., & Hamilton, M. J. (2014). Restoring the gut microbiome for the treatment of inflammatory bowel diseases. World journal of gastroenterology: WJG, 20(13), 3468.‏

Liu, S. X., Li, Y. H., Dai, W. K., Li, X. S., Qiu, C. Z., Ruan, M. L., ... & Shu, S. N. (2017). Fecal microbiota transplantation induces remission of infantile allergic colitis through gut microbiota re-establishment. World journal of gastroenterology, 23(48), 8570.‏

Collado, M., Grześkowiak, Ł., &Salminen, S. (2007). Probiotic strains and their combination inhibit in vitro adhesion of pathogens to pig intestinal mucosa. Current microbiology, 55(3), 260-265.‏

Khoruts, A., &Sadowsky, M. J. (2016). Understanding the mechanisms of faecal microbiota transplantation. Nature reviews Gastroenterology & hepatology, 13(9), 508-516.‏

Cohen, N. A., &Maharshak, N. (2017). Novel indications for fecal microbial transplantation: update and review of the literature. Digestive diseases and sciences, 62(5), 1131-1145.

‏Niederwerder, M. C. (2018). Fecal microbiota transplantation as a tool to treat and reduce susceptibility to disease in animals. Veterinary immunology and immunopathology, 206, 65-72.‏

Takáčová, M., Bomba, A., Tóthová, C., Micháľová, A., &Turňa, H. (2022). Any Future for Faecal Microbiota Transplantation as a Novel Strategy for Gut Microbiota Modulation in Human and Veterinary Medicine?. Life, 12(5), 723.‏

Bevans, D. W., Beauchemin, K. A., Schwartzkopf-Genswein, K. S., McKinnon, J. J., & McAllister, T. A. (2005). Effect of rapid or gradual grain adaptation on subacute acidosis and feed intake by feedlot cattle. Journal of Animal Science, 83(5), 1116-1132.‏

Mosoni, P., Martin, C., Forano, E., &Morgavi, D. P. (2011). Long-term defaunation increases the abundance of cellulolytic ruminococci and in methanogens but does not affect the bacterial and methanogen diversity the rumen of sheep. Journal of Animal Science, 89(3), 783-791.‏

Zhou, M., Peng, Y. J., Chen, Y., Klinger, C. M., Oba, M., Liu, J. X., & Guan, L. L. (2018). Assessment of microbiome changes after rumen transfaunation: implications on improving feed efficiency in beef cattle. Microbiome, 6(1), 1-14.‏

DePeters, E. J., & George, L. W. (2014). Rumen transfaunation. Immunology letters, 162(2), 69-76.‏

Elfaki, M. O., &Abdelatti, K. A. (2018). Rumen content as animal feed: a review. Journal of Veterinary Medicine and Animal Production, 7(2).‏

Sarteshnizi, F. R., Benemar, H. A., Seifdavati, J., Greiner, R., Salem, A. Z., &Behroozyar, H. K. (2018). Production of an environmentally friendly enzymatic feed additive for agriculture animals by spray drying abattoir’s rumen fluid in the presence of different hydrocolloids. Journal of Cleaner Production, 197, 870-874.‏

Steiner, S., Linhart, N., Neidl, A., Baumgartner, W., Tichy, A., &Wittek, T. (2020). Evaluation of the therapeutic efficacy of rumen transfaunation. Journal of Animal Physiology and Animal Nutrition, 104(1), 56-63.‏

Muscato, T. V., Tedeschi, L. O., & Russell, J. B. (2002). The effect of ruminal fluid preparations on the growth and health of newborn, milk-fed dairy calves. Journal of dairy science, 85(3), 648-656.‏

Zhong, R. Z., Sun, H. X., Li, G. D., Liu, H. W., & Zhou, D. W. (2014). Effects of inoculation with rumen fluid on nutrient digestibility, growth performance and rumen fermentation of early weaned lambs. Livestock Science, 162, 154-158.‏

Yu, S., Zhang, G., Liu, Z., Wu, P., Yu, Z., & Wang, J. (2020). Repeated inoculation with fresh rumen fluid before or during weaning modulates the microbiota composition and co-occurrence of the rumen and colon of lambs. BMC microbiology, 20(1), 1-15.‏

Wang, M., Wang, R., Liu, M., Beauchemin, K. A., Sun, X. Z., Tang, S. X., ... & He, Z. X. (2019). Dietary starch and rhubarb supplement increase ruminal dissolved hydrogen without altering rumen fermentation and methane emissions in goats. Animal, 13(5), 975-982.‏

Li, W., Edwards, A., Riehle, C., Cox, M. S., Raabis, S., Skarlupka, J. H., ... & Suen, G. (2019). Transcriptomics analysis of host liver and meta-transcriptome analysis of rumen epimural microbial community in young calves treated with artificial dosing of rumen content from adult donor cow. Scientific reports, 9(1), 1-11.‏

Belanche, A., Palma-Hidalgo, J. M., Nejjam, I., Jiménez, E., Martín-García, A. I., &Yáñez-Ruiz, D. R. (2020). Inoculation with rumen fluid in early life as a strategy to optimize the weaning process in intensive dairy goat systems. Journal of Dairy Science, 103(6), 5047-5060.‏

Sarteshnizi, F. R., Abdi-Benemar, H., Seifdavati, J., Khalilvandi-Behroozyar, H., Seyedsharifi, R., & Salem, A. Z. M. (2020). Influence of spray-dried rumen fluid supplementation on performance, blood metabolites and cytokines in suckling Holstein calves. animal, 14(9), 1849-1856.‏

Arshad, M. A., Hassan, F. U., Rehman, M. S., Huws, S. A., Cheng, Y., & Din, A. U. (2021). Gut microbiome colonization and development in neonatal ruminants: Strategies, prospects, and opportunities. Animal Nutrition, 7(3), 883-895.




How to Cite

Albakri, N. ., Amasha, R. ., & Aly, M. M. . (2023). Ruminant gut microbiota: importance, development, and alternative therapeutics for dysbiosis. Journal of Contemporary Medical Sciences, 9(1).