Significant Antifungal Activity of Streptomyce Plicatus NM3 Against Clinically Relevant Candida Species Collected from Jazan Hospital

Authors

  • Nourah S. Alzahrani Biology Department, Faculty of Science, King Abdulaziz University, Jeddah, Saudi Arabia; Biology Department, Faculty of Science, Jazan University, Jazan, Saudi Arabia.
  • Reda H. Amashah Biology Department, Faculty of Science, King Abdulaziz University, Jeddah, Saudi Arabia.
  • Nader M. Kameli Department of Medical Microbiology, Faculty of Applied Medical Sciences, Jazan University, Jazan, Saudi Arabia.
  • Magda M. Aly Biology Department, Faculty of Science, King Abdulaziz University, Jeddah, Saudi Arabia; Department of Botany and Microbiology, Kafrelsheikh University, Kafr El Sheikh, Egypt; Princess Doctor Najla Bint Saud Al Saud Center for Excellence Research in Biotechnology, Jeddah, Saudi Arabia.

DOI:

https://doi.org/10.22317/jcms.v10i6.1675

Keywords:

Streptomyce plicatus, Candida, Jazan, non polyenis.

Abstract

Objective: The purpose of this work was the biocontrol of Candida species from Jazan hospitals using non polyenic antifungal agent from actinomycetes.

Methods: Different isolates of Candida were collected, identified by Vitek 2, their characterized growth was recorded on chromoagar medium and their identification was confirmed using molecular method. Some isolated actinomycetes were tested for their biocontrol activity of Candida isolates.  

Results: Twenty-four isolates of Candida species obtained from Jazan hospital were identified and most of them were belong to Candida albican, Candida auris, Candida parapsilosis, Candida tropicalis, Candida glabrata, and Candida ciferrii. Out of 39 actinomycete isolates, and using agar well diffusion method, the isolate NM3 which was morphologically, physiologically and molecually identified as Streptomyce plicatus NM3, inhibited many Candida isolates, specially C. parapsilosis, C. auris and C. tropicalis with inhibition zone diameter ranged from 19-21 mm. Excellent antifungal activities were recorded for the ethyl acetate extract and the presence of ergesterol in the cultivation medium decreased the antifungal activity.  The UV spectra of the isolate NM3 extract showed non-polyenic antifungal structure.

Conclusion: Streptomyce plicatus NM3 showed excellent activity against resistant Candida isolates and produce secondary products with non polyenic antifungal structure, thus it can be used for further studies.

References

Ayari, A., Morakchi, H., & Djamila, K. G. (2012). Identification and antifungal activity of Streptomyces sp. S72 isolated from Lake Oubeira sediments in North-East of Algeria. African Journal of Biotechnology, 11(2), 305-311.‏

Boussaber, E. A., & Brahim, S. (2014). Idrissi SEl. Extraction and preliminary characterization of bioactive molecules produced by a new Streptomyces strain. J Environ Treat Tech, 2, 50-5.‏

Brown, G. D., Denning, D. W., Gow, N. A., Levitz, S. M., Netea, M. G., & White, T. C. (2012). Hidden killers: human fungal infections. Science translational medicine, 4(165), 165rv13-165rv13.

Brown, G. D., Denning, D. W., Gow, N. A., Levitz, S. M., Netea, M. G., & White, T. C. (2012). Hidden killers: human fungal infections. Science translational medicine, 4(165), 165rv13-165rv13.

Costa-de-Oliveira, S., Marcos Miranda, I., Silva, R. M., Pinto e Silva, A., Rocha, R., Amorim, A., ... & Pina-Vaz, C. (2011). FKS2 mutations associated with decreased echinocandin susceptibility of Candida glabrata following anidulafungin therapy. Antimicrobial agents and chemotherapy, 55(3), 1312-1314.‏

Dadar, M., Tiwari, R., Karthik, K., Chakraborty, S., Shahali, Y., & Dhama, K. (2018). Candida albicans-Biology, molecular characterization, pathogenicity, and advances in diagnosis and control–An update. Microbial pathogenesis, 117, 128-138.‏

Denning, D. W., & B. M. J. (2015). How to bolster the antifungal pipeline. Science‏, 1414–1416.

Develoux, M., & Bretagne, S. (2005). Candidoses et levuroses diverses. EMC-Maladies infectieuses, 2(3), 119-139.‏

Genilloud, O. (2017). Actinomycetes: still a source of novel antibiotics. Natural product reports, 34(10), 1203-1232.‏

Graf, B., Adam, T., Zill, E., & Göbel, U. B. (2000). Evaluation of the VITEK 2 system for rapid identification of yeasts and yeast-like organisms. Journal of clinical microbiology, 38(5), 1782-1785.‏

Gutzmer, R., Mommert, S., Küttler, U., Werfel, T., & Kapp, A. (2004). Rapid identification and differentiation of fungal DNA in dermatological specimens by LightCycler PCR. Journal of medical microbiology, 53(12), 1207-1214.‏

Hata, D. J., Hall, L., Fothergill, A. W., Larone, D. H., & Wengenack, N. L. (2007). Multicenter evaluation of the new VITEK 2 advanced colorimetric yeast identification card. Journal of clinical microbiology, 45(4), 1087-1092.‏

Hospenthal, D. R., Beckius, M. L., Floyd, K. L., Horvath, L. L., & Murray, C. K. (2006). Presumptive identification of Candida species other than C. albicans, C. krusei, and C. tropicalis with the chromogenic medium CHROMagar Candida. Annals of clinical microbiology and antimicrobials, 5, 1-5.‏

Houšť, J., Spížek, J., & Havlíček, V. (2020). Antifungal drugs. In Metabolites (Vol. 10, Issue 3). MDPI AG. https://doi.org/10.3390/metabo10030106

Jha, B. J., Dey, S., Tamang, M. D., Joshy, M. E., Shivananda, P. G., & Brahmadatan, K. N. (2006). Characterization of Candida species isolated from cases of lower respiratory tract infection. Kathmandu University medical journal (KUMJ), 4(3), 290-294.‏

Kainz, K., Bauer, M. A., Madeo, F., & Carmona-Gutierrez, D. (2020). Fungal infections in humans: the silent crisis. Microbial Cell, 7(6), 143.‏

Kumari, K. S., Raghunath, P., Harshavardhan, B., & Chaudhury, A. (2014). Distribution of Candida albicans and the non-albicans Candida species in different clinical specimens from South India. Int J Microbiol Res, 5, 1-5.‏

Lemriss, S., Laurent, F., Couble, A., Casoli, E., Lancelin, J. M., Saintpierre-Bonaccio, D., ... & Boiron, P. (2003). Screening of nonpolyenic antifungal metabolites produced by clinical isolates of actinomycetes. Canadian journal of microbiology, 49(11), 669-674.‏

Massonet, C., Van Eldere, J., Vaneechoutte, M., De Baere, T., Verhaegen, J., & Lagrou, K. (2004). Comparison of VITEK 2 with ITS2-fragment length polymorphism analysis for identification of yeast species. Journal of clinical microbiology, 42(5), 2209-2211.‏

Melhem, M. S. C., Bertoletti, A., Lucca, H. R. L., Silva, R. B. O., Meneghin, F. A., & Szeszs, M. W. (2013). Use of the VITEK 2 system to identify and test the antifungal susceptibility of clinically relevant yeast species. Brazilian Journal of Microbiology, 44, 1257-1266.‏

Myer, P. R., Kim, M., Freetly, H. C., & Smith, T. P. (2016). Evaluation of 16S rRNA amplicon sequencing using two next-generation sequencing technologies for phylogenetic analysis of the rumen bacterial community in steers. Journal of microbiological methods, 127, 132-140.‏

Nami, S., Mohammadi, R., Vakili, M., Khezripour, K., Mirzaei, H., & Morovati, H. (2019). Fungal vaccines, mechanism of actions and immunology: A comprehensive review. Biomedicine & Pharmacotherapy, 109, 333-344.‏

Radhakrishnan, M., Balaji, S., & Balagurunathan, R. (2007). Thermotolerant actinomycetes from the Himalayan mountain-antagonistic potential, characterization and identification of selected strains. Malaysian Applied Biology, 36(1), 59.‏

Sakagami, T., Kawano, T., Yamashita, K., Yamada, E., Fujino, N., Kaeriyama, M., ... & Mikamo, H. (2019). Antifungal susceptibility trend and analysis of resistance mechanism for Candida species isolated from bloodstream at a Japanese university hospital. Journal of Infection and Chemotherapy, 25(1), 34-40.

Sardi, J. C. O., Scorzoni, L., Bernardi, T., Fusco-Almeida, A. M., & Mendes Giannini, M. J. S. (2013). Candida species: current epidemiology, pathogenicity, biofilm formation, natural antifungal products and new therapeutic options. Journal of medical microbiology, 62(1), 10-24.‏

Selvameenal, L., Radhakrishnan, M., & Balagurunathan, R. (2009). Antibiotic pigment from desert soil actinomycetes; biological activity, purification and chemical screening. Indian journal of pharmaceutical sciences, 71(5), 499.‏

Sergey BZ (2012). Marine actinomycetes as an emerging resource for the drug development pipelines. J. Biotechnol. 158:168-17

Silva, S., Negri, M., Henriques, M., Oliveira, R., Williams, D. W., & Azeredo, J. (2012). Candida glabrata, Candida parapsilosis and Candida tropicalis: biology, epidemiology, pathogenicity and antifungal resistance. FEMS microbiology reviews, 36(2), 288-305.‏

Soll, D. R. (2000). The ins and outs of DNA fingerprinting the infectious fungi. Clinical Microbiology Reviews, 13(2), 332-370.‏

Talapko, J., Juzbašić, M., Matijević, T., Pustijanac, E., Bekić, S., Kotris, I., & Škrlec, I. (2021). Candida albicans—the virulence factors and clinical manifestations of infection. Journal of Fungi, 7(2), 79.‏

Tamo, S. B. (2020). Candida infections: clinical features, diagnosis and treatment. Infect Dis Clin Microbiol, 2(2), 91-102.

Vanreppelen, G., Wuyts, J., Van Dijck, P., & Vandecruys, P. (2023). Sources of antifungal drugs. Journal of Fungi, 9(2), 171.‏

Veríssimo, C. ‏ (2016). Fungal infections. In Environmental Mycology in Public Health, 27–34.

World Health Organization (2018) WHO - The Top 10 Causes of Death, 24 Maggio. Geneva, Switzerland: WHO

Published

2025-01-03

How to Cite

Alzahrani , N. S., Amashah, R. H., Kameli , N. M., & Aly, M. M. (2025). Significant Antifungal Activity of Streptomyce Plicatus NM3 Against Clinically Relevant Candida Species Collected from Jazan Hospital. Journal of Contemporary Medical Sciences, 10(6). https://doi.org/10.22317/jcms.v10i6.1675