Significant Antifungal Activity of Streptomyce Plicatus NM3 Against Clinically Relevant Candida Species Collected from Jazan Hospital
DOI:
https://doi.org/10.22317/jcms.v10i6.1675Keywords:
Streptomyce plicatus, Candida, Jazan, non polyenis.Abstract
Objective: The purpose of this work was the biocontrol of Candida species from Jazan hospitals using non polyenic antifungal agent from actinomycetes.
Methods: Different isolates of Candida were collected, identified by Vitek 2, their characterized growth was recorded on chromoagar medium and their identification was confirmed using molecular method. Some isolated actinomycetes were tested for their biocontrol activity of Candida isolates.
Results: Twenty-four isolates of Candida species obtained from Jazan hospital were identified and most of them were belong to Candida albican, Candida auris, Candida parapsilosis, Candida tropicalis, Candida glabrata, and Candida ciferrii. Out of 39 actinomycete isolates, and using agar well diffusion method, the isolate NM3 which was morphologically, physiologically and molecually identified as Streptomyce plicatus NM3, inhibited many Candida isolates, specially C. parapsilosis, C. auris and C. tropicalis with inhibition zone diameter ranged from 19-21 mm. Excellent antifungal activities were recorded for the ethyl acetate extract and the presence of ergesterol in the cultivation medium decreased the antifungal activity. The UV spectra of the isolate NM3 extract showed non-polyenic antifungal structure.
Conclusion: Streptomyce plicatus NM3 showed excellent activity against resistant Candida isolates and produce secondary products with non polyenic antifungal structure, thus it can be used for further studies.
References
Brown, G. D., Denning, D. W., Gow, N. A., Levitz, S. M., Netea, M. G., & White, T. C. (2012). Hidden killers: human fungal infections. Science Translational Medicine, 4(165), 165rv13–165rv13.
Rana, J. S., Khan, S. S., Lloyd-Jones, D. M., & Sidney, S. (2021). Changes in mortality in top 10 causes of death from 2011 to 2018. Journal of General Internal Medicine, 36, 2517–2518.
Nami, S., Mohammadi, R., Vakili, M., Khezripour, K., Mirzaei, H., & Morovati, H. (2019). Fungal vaccines, mechanism of actions and immunology: A comprehensive review. Biomedicine & Pharmacotherapy, 109, 333–344.
Sakagami, T., Kawano, T., Yamashita, K., Yamada, E., Fujino, N., Kaeriyama, M., ... & Mikamo, H. (2019). Antifungal susceptibility trend and analysis of resistance mechanism for Candida species isolated from bloodstream at a Japanese university hospital. Journal of Infection and Chemotherapy, 25(1), 34–40.
Marak, M. B., & Dhanashree, B. (2018). Antifungal susceptibility and biofilm production of Candida spp. isolated from clinical samples. International Journal of Microbiology, 2018(1), 7495218.
Kainz, K., Bauer, M. A., Madeo, F., & Carmona-Gutierrez, D. (2020). Fungal infections in humans: the silent crisis. Microbial Cell, 7(6), 143.
Veríssimo, C. (2016). Fungal infections. In Environmental Mycology in Public Health, 27–34.
Dadar, M., Tiwari, R., Karthik, K., Chakraborty, S., Shahali, Y., & Dhama, K. (2018). Candida albicans-Biology, molecular characterization, athogenicity, and advances in diagnosis and control–An update. Microbial Pathogenesis, 117, 128–138.
Talapko, J., Juzbašić, M., Matijević, T., Pustijanac, E., Bekić, S., Kotris, I., & Škrlec, I. (2021). Candida albicans-the virulence factors and clinical manifestations of infection. Journal of Fungi, 7(2), 79.
Develoux, M., & Bretagne, S. (2005). Candidoses et levuroses diverses. EMCMaladies infectieuses, 2(3), 119–139.
Tamo, S. B. (2020). Candida infections: Clinical features, diagnosis and treatment. Infect Dis Clin Microbiol, 2(2), 91–102.
Silva, S., Negri, M., Henriques, M., Oliveira, R., Williams, D. W., & Azeredo, J. (2012). Candida glabrata, Candida parapsilosis and Candida tropicalis: Biology, epidemiology, pathogenicity and antifungal resistance. FEMS Microbiology Reviews, 36(2), 288–305.
Costa-de-Oliveira S, Rodrigues AG. Candida albicans Antifungal Resistance and Tolerance in Bloodstream Infections: The Triad Yeast-Host-Antifungal. Microorganisms, 2020; 8(2):154. https://doi.org/10.3390/microorganisms8020154.
Houšť, J., Spížek, J., & Havlíček, V. (2020). Antifungal drugs. In Metabolites (Vol. 10, Issue 3). MDPI AG. https://doi.org/10.3390/metabo10030106
Genilloud, O. (2017). Actinomycetes: Still a source of novel antibiotics. Natural Product Reports, 34(10), 1203–1232.
Vanreppelen, G., Wuyts, J., Van Dijck, P., & Vandecruys, P. (2023). Sources of antifungal drugs. Journal of Fungi, 9(2), 171.
Hospenthal, D. R., Beckius, M. L., Floyd, K. L., Horvath, L. L., & Murray, C. K. (2006). Presumptive identification of Candida species other than C. albicans, C. krusei, and C. tropicalis with the chromogenic medium CHROMagar Candida. Annals of Clinical Microbiology and Antimicrobials, 5, 1–5.
Radhakrishnan, M., Balaji, S., & Balagurunathan, R. (2007). Thermotolerant actinomycetes from the Himalayan mountain-antagonistic potential, characterization and identification of selected strains. Malaysian Applied Biology, 36(1), 59.
Lemriss, S., Laurent, F., Couble, A., Casoli, E., Lancelin, J. M., Saintpierre-Bonaccio, D., ... & Boiron, P. (2003). Screening of nonpolyenic antifungal metabolites produced by clinical isolates of actinomycetes. Canadian Journal of Microbiology, 49(11), 669–674.
Boussaber, E. A., & Brahim, S. (2014). Idrissi SEl. Extraction and preliminary characterization of bioactive molecules produced by a new Streptomyces strain. J Environ Treat Tech, 2, 50–5.
Ayari, A., Morakchi, H., & Djamila, K. G. (2012). Identification and antifungal activity of Streptomyces sp. S72 isolated from Lake Oubeira sediments in North-East of Algeria. African Journal of Biotechnology, 11(2), 305–311.
Myer, P. R., Kim, M., Freetly, H. C., & Smith, T. P. (2016). Evaluation of 16S rRNA amplicon sequencing using two next-generation sequencing technologies for phylogenetic analysis of the rumen bacterial community in steers. Journal of Microbiological Methods, 127, 132–140. This work is licensed under a Creative Commons Attribution-NonCommercial 3.0 Unported License which allows users to read, copy, distribute and make derivative works for non-commercial purposes from the material, as long as the author of the original work is cited properly.
Gutzmer, R., Mommert, S., Küttler, U., Werfel, T., & Kapp, A. (2004). Rapid identification and differentiation of fungal DNA in dermatological specimens by LightCycler PCR. Journal of Medical Microbiology, 53(12), 1207–1214.
Selvameenal, L., Radhakrishnan, M., & Balagurunathan, R. (2009). Antibiotic pigment from desert soil actinomycetes; biological activity, purification and chemical screening. Indian Journal of Pharmaceutical Sciences, 71(5), 499.
Sardi, J. C. O., Scorzoni, L., Bernardi, T., Fusco-Almeida, A. M., & Mendes Giannini, M. J. S. (2013). Candida species: Current epidemiology, pathogenicity, biofilm formation, natural antifungal products and new therapeutic options. Journal of Medical Microbiology, 62(1), 10–24.
Graf, B., Adam, T., Zill, E., & Göbel, U. B. (2000). Evaluation of the VITEK 2 system for rapid identification of yeasts and yeast-like organisms. Journal of Clinical Microbiology, 38(5), 1782–1785.
Jha, B. J., Dey, S., Tamang, M. D., Joshy, M. E., Shivananda, P. G., & Brahmadatan, K. N. (2006). Characterization of Candida species isolated from cases of lower respiratory tract infection. Kathmandu University Medical Journal (KUMJ), 4(3), 290–294.
Kumari, K. S., Raghunath, P., Harshavardhan, B., & Chaudhury, A. (2014). Distribution of Candida albicans and the non-albicans Candida species in different clinical specimens from South India. Int J Microbiol Res, 5, 1–5.
Massonet, C., Van Eldere, J., Vaneechoutte, M., De Baere, T., Verhaegen, J., & Lagrou, K. (2004). Comparison of VITEK 2 with ITS2-fragment length polymorphism analysis for identification of yeast species. Journal of Clinical Microbiology, 42(5), 2209–2211.
Hata, D. J., Hall, L., Fothergill, A. W., Larone, D. H., & Wengenack, N. L. (2007). Multicenter evaluation of the new VITEK 2 advanced colorimetric yeast identification card. Journal of Clinical Microbiology, 45(4), 1087–1092.
Melhem, M. S. C., Bertoletti, A., Lucca, H. R. L., Silva, R. B. O., Meneghin, F. A., & Szeszs, M. W. (2013). Use of the VITEK 2 system to identify and test the antifungal susceptibility of clinically relevant yeast species. Brazilian Journal of Microbiology, 44, 1257–1266.
Soll, D. R. (2000). The ins and outs of DNA fingerprinting the infectious fungi. Clinical Microbiology Reviews, 13(2), 332–370.
Yuan, J., Zhao, M., Li, R., Huang, Q., Rensing, C., Raza, W., & Shen, Q. (2016). Antibacterial compounds-macrolactin alters the soil bacterial community and abundance of the gene encoding PKS. Frontiers in Microbiology, 7, 1904.
Narasimhan, B., Sharma, D., & Kumar, P. (2011). Biological importance of imidazole nucleus in the new millennium. Medicinal Chemistry Research, 20, 1119–1140.
Arasu, M. V., Duraipandiyan, V., Agastian, P., & Ignacimuthu, S. (2008). Antimicrobial activity of Streptomyces spp. ERI-26 recovered from Western Ghats of Tamil Nadu. Journal de Mycologie Médicale, 18(3), 147–153.
Sergey BZ (2012). Marine actinomycetes as an emerging resource for the drug development pipelines. J. Biotechnol. 158:168–17.
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2024 Journal of Contemporary Medical Sciences

This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.