Targeting Biofilm-Forming Serratia marcescens by Bacteriophages and Disrupting Biofilm and Exopolysaccharide Production

Authors

  • Zakia F. S. AL-Balawy Department of Biological Science, Faculty of Science, King Abdulaziz University, Jeddah,Saudi Arabia.
  • Ehab H. Mattar Department of Biological Science, Faculty of Science, King Abdulaziz University, Jeddah, Saudi Arabia.
  • Saleh M. Al-maaqar Department of Biological Science, Faculty of Science, King Abdulaziz University, Jeddah, Saudi Arabia; Department of Biology, Faculty of Education, Albaydha University, Al-Baydha, Yemen.
  • Magda M. Aly Department of Biological Science, Faculty of Science, King Abdulaziz University, Jeddah, Saudi Arabia.

DOI:

https://doi.org/10.22317/jcms.v11i2.1783

Keywords:

Bacteriophages, Drug Resistance, Microbial, Serratia marcescens, Biofilms

Abstract

Objective This study aimed to isolate two phages from soil and wastewater to assess their effectiveness in reducing biofilm and EPS production and disrupting biofilms in antibiotic-resistant S. marcescens.

Methods: Soil and wastewater samples were added to a broth medium to allow phage infection of the bacterial host and enhance phage isolation.  Bacteriophage titers, stability at different pH values and temperature, and host spectrum were detected. The effect of the combination of phage and antibiotics on the target host was recorded. Also, the inhibition of biofilm and EPS formation by the presence of phages was studied.

Results: Two phages were obtained from wastewater and soil. Plaque morphology analysis revealed distinct characteristics for each bacteriophage. Both sources yielded high titers of phages specific to S. marcescens, with the wastewater-derived phage (S.wph) showing a slightly higher titer (1.67×109 PFU/ml) compared to the soil-derived phage (S.So.ph). The stability and host range of S.wph and S.So.ph were studied. The potential of S.wph to target multiple bacterial species could be valuable in developing phage-based therapies against diverse bacterial infections. The recorded MICs were 105 and 106 PFU/ml for S.wph and S.So.ph targeting S. marcescens, respectively. Ampicillin exhibited minimal inhibitory effects on S. marcescens with bacterial growth, while the combination of ampicillin with S.wph maintained the strongest antibacterial effect with no significant differences to S.wph monotherapy. In contrast, the ampicillin and S.So.ph combination displayed a moderate bacterial inhibition compared to ampicillin with S.wph, but there is a considerable difference compared to S.So.ph alone. Wastewater-derived phage (S.wph), soil-derived phage (S.So.ph), and their mixture inhibited biofilm formation and EPS secretion by S. marcescens.

Conclusion: This research underscores the promising potential of bacteriophages as alternative treatments to conventional antibiotics, particularly in the face of increasing bacterial antibiotic resistance.

References

Abbas, R. Z., Alsayeqh, A. F., & Aqib, A. I. (2022). Role of bacteriophages for optimized health and production of poultry. Animals, 12(23), 3378.

Abedon, S. T. (2019). Bacteriophage Ecology: Population Growth in Bacterial Hosts. Microbial Ecology, 77(1), 1-16.

Adams, M. H. (1959). Bacteriophages. New York: Interscience Publishers.

Allen, J. L., Doidge, N. P., Bushell, R. N., Browning, G. F., & Marenda, M. S. (2022). Healthcare-associated infections caused by chlorhexidine-tolerant Serratia marcescens carrying a promiscuous IncHI2 multi-drug resistance plasmid in a veterinary hospital. PloS one, 17(3), e0264848.

Al-Madboly, L. A., Aboulmagd, A., El-Salam, M. A., Kushkevych, I., & El-Morsi, R. M. (2024). Microbial enzymes as powerful natural anti-biofilm candidates. Microbial Cell Factories, 23(1), 343.

Artawinata, P. C., Lorraine, S., & Waturangi, D. E. (2023). Isolation and characterization of bacteriophages from soil against food spoilage and foodborne pathogenic bacteria. Scientific Reports, 13(1), 9282.

Atmakuri, A., Yadav, B., Tiwari, B., Drogui, P., Tyagi, R. D., & Wong, J. W. (2024). Nature’s architects: a comprehensive review of extracellular polymeric substances and their diverse applications. Waste Disposal & Sustainable Energy, 1-23.

Au, A., Lee, H., Ye, T., Dave, U., & Rahman, A. (2021). Bacteriophages: combating antimicrobial resistance in food-borne bacteria prevalent in agriculture. Microorganisms, 10(1), 46.

Bagińska, N., Grygiel, I., Orwat, F., Harhala, M.A., Jędrusiak, A., Gębarowska, E., Letkiewicz, S., Górski, A. and Jończyk-Matysiak, E., 2024. Stability study in selected conditions and biofilm-reducing activity of phages active against drug-resistant Acinetobacter baumannii. Scientific Reports, 4285 (2024). https://doi.org/10.1038/s41598-024-54469-z

Byun, K. H., Han, S. H., Choi, M. W., Kim, B. H., & Ha, S. D. (2024). Control of Listeria monocytogenes in food industry by a combination treatment of natural aromatic compound with Listeria-specific bacteriophage cocktail. Food Research International, 177, 113859.

Chibeu, A., Ceyssens, P. J., Hertveldt, K., Volckaert, G., Cornelis, P., Matthijs, S., & Lavigne, R. (2009). The adsorption of Pseudomonas aeruginosa bacteriophage φKMV is dependent on expression regulation of type IV pili genes. FEMS microbiology letters, 296(2), 210-218.

DuBois, M., Gilles, K. A., Hamilton, J. K., Rebers, P. T., & Smith, F. (1956). Colorimetric method for determination of sugars and related substances. Analytical chemistry, 28(3), 350-356.

Eghbalpoor, F., Gorji, M., Alavigeh, M. Z., & Moghadam, M. T. (2024). Genetically engineered phages and engineered phage-derived enzymes to destroy biofilms of antibiotics resistance bacteria. Heliyon, 10(15).

Elahi, Y., Nowroozi, J., & Fard, R. M. N. (2021). Isolation and characterization of bacteriophages from wastewater sources on Enterococcus spp. isolated from clinical samples. Iranian Journal of Microbiology, 13(5), 671.

El-Telbany, M., Lin, C. Y., Abdelaziz, M. N., Maung, A. T., El-Shibiny, A., Mohammadi, T. N., ... & El, M. (2023). Potential application of phage vB_EfKS5 to control Enterococcus faecalis and its biofilm in food. AMB Express, 13(1), 130

Friedman, D. I., et al. (2019). Broad-spectrum bacteriophage discovery in wastewater. Antimicrobial Agents and Chemotherapy, 63(2).

Gordillo Altamirano, F. L., & Barr, J. J. (2019). Phage therapy in the postantibiotic era. Clinical Microbiology Reviews, 32(2), e00066-18.

Hagens, S., & Loessner, M. J. (2010). Application of bacteriophages for food safety. Food Control, 21(2), 155-161.

Javed, M., et al. (2019). Phage Therapy: A Review on the fight against biofilm-forming pathogens. Journal of Microbial & Biochemical Technology, 11(4), 217-222.

Kering, K. K., Zhang, X., Nyaruaba, R., Yu, J., & Wei, H. (2020). Application of adaptive evolution to improve the stability of bacteriophages during storage. Viruses, 12(4), 423.

Khan Mirzaei, M., & Nilsson, A. S. (2015). Isolation of phages for phage therapy: a comparison of spot tests and efficiency of plating analyses for determination of host range and efficacy. PLoS one, 10(3), e0118557.

Kodali, V. P., & Sen, R. (2011). Partial structural elucidation of an antioxidative exopolysaccharide from a probiotic bacterium. Journal of Natural Products, 8, 1692-1697.

Kok DN, Turnbull J, Takeuchi N, Tsourkas PK, Hendrickson HL. In Vitro Evolution to Increase the Titers of Difficult Bacteriophages: RAMP-UP Protocol. Phage (New Rochelle). 2023 Jun 1;4(2):68-81. doi: 10.1089/phage.2023.0005.

Kortright, K. E., Chan, B. K., Koff, J. L., & Turner, P. E. (2019). Phage therapy: A renewed approach to combat antibiotic-resistant bacteria. Cell Host & Microbe, 25(2), 219-232.

Kosznik-Kwaśnicka, K., Stasiłojć, M., Grabowski, Ł., Zdrojewska, K., Węgrzyn, G., & Węgrzyn, A. (2022). Efficacy and safety of phage therapy against Salmonella enterica serovars Typhimurium and Enteritidis estimated by using a battery of in vitro tests and the Galleria mellonella animal model. Microbiological Research, 261, 127052.

Kumar, A., & Nadda, A. K. (2024). Isolation and Characterization of a Prodigiosin Pigment Producing Bacterial Straing from Himalayan Region (Doctoral dissertation, Jaypee University of Information Technology, Solan, HP).

Kumar, S., Sahoo, G. R., & Ghosh, S. (2020). Bacteriophage: A potential tool for the treatment of antibiotic-resistant bacterial infections. Frontiers in Microbiology, 11, 695. https://doi.org/10.3389/fmicb.2020.00695

Kumari, P., Chakraborty, T., & Ghosh, S. Advancement of Phage Therapy Approaches in The Battle of Multi-Drug Resistance: A Review. (2023). Int. J. Life Sci. Pharma Res, 13(2), P17-P36.

Kwan, A., et al. (2019). Application of bacteriophage therapy against antibiotic-resistant Serratia marcescens. Journal of Antimicrobial Chemotherapy, 74(9), 2524-2531

Luo, Y., Yang, Q., Zhang, D., & Yan, W. (2020). Mechanisms and control strategies of antibiotic resistance in pathological biofilms. Journal of Microbiology and Biotechnology, 31(1), 1.

Mahmoud, E.R.A., Ahmed, H.A.H., Abo-senna, A.S.M., Riad, O.K.M. and Abo, M., 2021. Isolation and characterization of six gamma-irradiated bacteriophages specific for MRSA and VRSA isolated from skin infections. Journal of Radiation Research and Applied Sciences, 14(1), pp.34-43.

Mangieri, N. (2021). Applications of Bacteriophages for the Control of Pathogenic Escherichia coli O157:H7 levels in ruminants. Appl Environ Microbiol. 2006 Aug;72(8):5359-66. doi: 10.1128/AEM.00099-06.

McCallin, S., Pires, D. P., & Sarker, S. A. (2013). Bacteriophage therapy: A new solution to the problem of antibiotic resistance. Journal of Global Antimicrobial Resistance, 1, 146–154. https://doi.org/10.1016/j.jgar.2013.11.002

Meneses, L., Brandao, A.C., Coenye, T., Braga, A.C., Pires, D.P. and Azeredo, J., 2023. A systematic review of the use of bacteriophages for in vitro biofilm control. European Journal of Clinical Microbiology & Infectious Diseases, 42(8), pp.919-928.

Michalik, M., Podbielska-Kubera, A., & Dmowska-Koroblewska, A. (2025). Antibiotic Resistance of Staphylococcus aureus Strains—Searching for New Antimicrobial Agents. Pharmaceuticals, 18(1), 81.

Mickos, V. P. (2023). Bacteriophages as a Sustainable Food Safety Approach for Vegetable Production in Controlled Environment Agriculture Systems (Master's thesis, Auburn University).

Miller, P. F., et al. (2021). Targeted bacteriophage therapy for the treatment of bacterial infections. Future Microbiology, 16(8), 545-560.

Montso, P. K., Mlambo, V., & Ateba, C. N. (2019). Characterization of lytic bacteriophages infecting multidrug-resistant shiga toxigenic atypical Escherichia coli O177 strains isolated from cattle feces. Frontiers in public health, 7, 355.

Moryl M, Szychowska P, Dziąg J, Różalski A, Torzewska A. The Combination of Phage Therapy and β-Lactam Antibiotics for the Effective Treatment of Enterococcus faecalis Infections. International Journal of Molecular Sciences. 2025; 26(1):11. https://doi.org/10.3390/ijms26010011

Muteeb, G., Rehman, M. T., Shahwan, M., & Aatif, M. (2023). Origin of antibiotics and antibiotic resistance, and their impacts on drug development: A narrative review. Pharmaceuticals, 16(11), 1615.

Nikolic, I.; Vukovic, D.; Gavric, D.; Cvetanovic, J.; Aleksic Sabo, V.; Gostimirovic, S.; Narancic, J.; Knezevic, P. An Optimized Checkerboard Method for Phage-Antibiotic Synergy Detection. Viruses 2022, 14, 1542

O'Toole, G. A. (2011). Microtiter dish biofilm formation assay. Journal of visualized experiments: JoVE, (47), 2437.

Pan, H., Shu, M., Li, T. J., Shen, K. S., Zhao, Y. Y., Liao, N. B., ... & Wu, G. P. (2023). Isolation and characterization of two lytic phages against multidrug-resistant Salmonella and their application as a cocktail for biocontrol in foods. LWT, 185, 115184.

Paul, S., Parvez, S. S., Goswami, A., & Banik, A. (2024). Exopolysaccharides from agriculturally important microorganisms: conferring soil nutrient status and plant health. International Journal of Biological Macromolecules, 129954.

Pires DP, Oliveira H, Melo LD, Sillankorva S, Azeredo J. Bacteriophage-encoded depolymerases: their diversity and biotechnological applications. Appl Microbiol Biotechnol. 2016 Mar;100(5):2141-51. doi: 10.1007/s00253-015-7247-0.

Popescu, M., Van Belleghem, J. D., Khosravi, A., & Bollyky, P. L. (2021). Bacteriophages and the immune system. Annual review of virology, 8(1), 415-435.antimicrobials. Archives of Microbiology, 206(11), 432.

Pugazhendhi, A. S., Wei, F., Hughes, M., & Coathup, M. (2022). Bacterial adhesion, virulence, and biofilm formation. In Musculoskeletal Infection pp. 19-64). Cham: Springer International Publishing.

Ragupathi, H., Pushparaj, M. M., Gopi, S. M., Govindarajan, D. K., & Kandaswamy, K. (2024). Biofilm matrix: a multifaceted layer of biomolecules and a defensive barrier against Eghbalpoor, F., Gorji, M., Alavigeh, M. Z., & Moghadam, M. T. (2024).

Ramesh, N., Archana, L., Madurantakam Royam, M., Manohar, P., & Eniyan, K. (2019). Effect of various bacteriological media on the plaque morphology of Staphylococcus and Vibrio phages. Access Microbiology, 1(4), e000036.

Ranjbar, R., Alizadeh, A., & Hashemi, A. (2019). Opportunities and challenges in phage therapy against Gram-negative bacteria. Current Medical Mycology, 5(2), 30-40. https://doi.org/10.18502/cmm.5.2.4248

Rastegar, S., Skurnik, M., Tadjrobehkar, O., Samareh, A., Samare-Najaf, M., Lotfian, Z., & Sabouri, S. (2024). Synergistic effects of bacteriophage cocktail and antibiotics combinations against extensively drug-resistant Acinetobacter baumannii. BMC Infectious Diseases, 24(1).

Ray, C., Shenoy, A.T., Orihuela, C.J. et al. Killing of Serratia marcescens biofilms with chloramphenicol. Ann Clin Microbiol Antimicrob 16, 19 (2017). https://doi.org/10.1186/s12941-017-0192-2

Rodriguez-Rubio, L., et al. (2014). Characterization of bacteriophage resistance in Escherichia coli. International Journal of Antimicrobial Agents, 43(1), 59-64.

Saharan, B. S., Beniwal, N., & Duhan, J. S. (2024). From formulation to function: A detailed review of microbial biofilms and their polymer-based extracellular substances. The Microbe, 100194.

Shah, S. M., et al. (2020). Stability of bacteriophage T4 under various pH and temperature conditions. Journal of Virology Methods, 284, 113919.

Shariati, A., Noei, M., & Chegini, Z. (2023). Bacteriophages: The promising therapeutic approach for enhancing ciprofloxacin efficacy against bacterial infection. Journal of Clinical Laboratory Analysis, 37(9-10), e24932.

Smitinont, T., Tansakul, C., Tanasupawat, S., Keeratipibul, S., Navarini, L., Bosco, M., & Cescutti, P. A. O. L. A. (1999). Exopolysaccharide-producing lactic acid bacteria strains from traditional Thai fermented foods: isolation, identification and exopolysaccharide characterization. International Journal of Food Microbiology, 51(2-3), 105-111.

Sorensen, M. C. H., & Tchagang, A. P. (2019). Discovery of bacteriophages capable of controlling microbial communities: a comprehensive review on methodologies and technologies. Viruses, 11(9), 264. https://doi.org/10.3390/v11090264

Stepanović, S., Vuković, D., Hola, V., Bonaventura, G. D., Djukić, S., Ćirković, I., & Ruzicka, F. (2007). Quantification of biofilm in microtiter plates: overview of testing conditions and practical recommendations for assessment of biofilm production by staphylococci. Apmis, 115(8),

Tagliaferri, T. L., Jansen, M., & Horz, H. P. (2019). Fighting pathogenic bacteria on two fronts: Phages and antibiotics as combined strategy. Frontiers in Cellular and Infection Microbiology, 9, 22.

Topka-Bielecka, G., Nejman-Faleńczyk, B., Bloch, S., Dydecka, A., Necel, A., Węgrzyn, A., & Węgrzyn, G. (2021). Phage–bacteria interactions in potential applications of bacteriophage vB_EfaS-271 against Enterococcus faecalis. Viruses, 13(2), 318.

Unicomb, L. E., et al. (2002). Thermal stability of bacteriophages. Applied and Environmental Microbiology , 68(2), 908-911.

Walton B, Abbondante S., Marshall ME, Dobruchowska J M et al., 2024. A biofilm-tropic Pseudomonas aeruginosa bacteriophage uses the exopolysaccharide Psl as receptor. eLife13:RP102352

Wang, X., Liu, M., Yu, C., Li, J., & Zhou, X. (2023). Biofilm formation: mechanistic insights and therapeutic targets. Molecular Biomedicine, 4(1), 49.

Wong, S.C., Chau, P.H., So, S.Y.C., Chiu, K.H.Y., Yuen, L.L.H., AuYeung, C.H.Y., Lam, G.K.M., Chan, V.W.M., Chen, J.H.K., Chen, H. and Li, X., 2023. Epidemiology of multidrug-resistant organisms before and during COVID-19 in Hong Kong. Infection Prevention in Practice, 5(2), p.100286.

World Health Organization. (2020). Antimicrobial resistance: Global report on surveillance.

Xue, Y., Gao, Y., Guo, M., Zhang, Y., Zhao, G., Xia, L., ... & Yan, Y. (2024). Phage cocktail superimposed disinfection: A ecological strategy for preventing pathogenic bacterial infections in dairy farms. Environmental Research, 252, 118720.

Yang, Y., Shen, W., Zhong, Q., Chen, Q., He, X., Baker, J. L., ... & Le, S. (2020). Development of a bacteriophage cocktail to constrain the emergence of phage-resistant Pseudomonas aeruginosa. Frontiers in microbiology, 11, 327.

Zafar, N., Aslam, M. A., Rahman, S. U., & Saqib, M. (2024). Isolation and characterization of bacteriophages targeting methicillin-resistant Staphylococcus aureus (MRSA) from burn patients and sewage water: a genomic and proteomic study. International Microbiology, 1-17.

Published

2025-04-26

How to Cite

AL-Balawy , Z. F. S., Mattar, E. H., Al-maaqar, S. M., & Aly, M. M. (2025). Targeting Biofilm-Forming Serratia marcescens by Bacteriophages and Disrupting Biofilm and Exopolysaccharide Production. Journal of Contemporary Medical Sciences, 11(2). https://doi.org/10.22317/jcms.v11i2.1783